# Total position where king can reach on a chessboard in exactly M moves | Set 2

Given the position of the king on an 8 X 8 chessboard, the task is to count the total number of squares that can be visited by the king in m moves. The position of the king is denoted using row and column number.
Note: The square which is currently acquired by the king is already visited and will be counted in the result.

Examples:

Input: r = 4, c = 4, m = 1
Output: 9

Input: r = 4, c = 4, m = 2
Output: 25

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: A king can move one square in any direction (i.e horizontally, vertically and diagonally). So, in one move king can visit its adjacent squares.

So, A square which is within m units distance (Considering 1 Square as 1 unit distance) from the king’s current position can be visited in m moves.

1. For all squares of the chessboard, check if a particular square is at m unit distance away or less from King’s current position.
2. Increment count, if step 1 is true.
3. Print the count

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the count of squares ` `// that can be visited by king in m moves ` `int` `countSquares(``int` `r, ``int` `c, ``int` `m) ` `{ ` ` `  `    ``// To store the count of squares ` `    ``int` `squares = 0; ` ` `  `    ``// Check all squares of ` `    ``// the chessboard ` `    ``for` `(``int` `i = 1; i <= 8; i++) { ` `        ``for` `(``int` `j = 1; j <= 8; j++) { ` ` `  `            ``// Check if square (i, j) is ` `            ``// at a distance <= m units ` `            ``// from king's current position ` `            ``if` `(max(``abs``(i - r), ``abs``(j - c)) <= m) ` `                ``squares++; ` `        ``} ` `    ``} ` ` `  `    ``// Return count of squares ` `    ``return` `squares; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `r = 4, c = 4, m = 1; ` ` `  `    ``cout << countSquares(r, c, m) << endl; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `class` `GFG { ` ` `  `    ``// Function to return the count of squares ` `    ``// that can be visited by king in m moves ` `    ``static` `int` `countSquares(``int` `r, ``int` `c, ``int` `m) ` `    ``{ ` `        ``// To store the count of squares ` `        ``int` `squares = ``0``; ` ` `  `        ``// Check all squares of ` `        ``// the chessboard ` `        ``for` `(``int` `i = ``1``; i <= ``8``; i++) { ` `            ``for` `(``int` `j = ``1``; j <= ``8``; j++) { ` ` `  `                ``// Check if square (i, j) is ` `                ``// at a distance <= m units ` `                ``// from king's current position ` `                ``if` `(Math.max(Math.abs(i - r), Math.abs(j - c)) <= m) ` `                    ``squares++; ` `            ``} ` `        ``} ` ` `  `        ``// Return count of squares ` `        ``return` `squares; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `r = ``4``, c = ``4``, m = ``1``; ` `        ``System.out.print(countSquares(r, c, m)); ` `    ``} ` `} `

## C#

 `// C# implementation of the approach ` `using` `System; ` `class` `GFG { ` ` `  `    ``// Function to return the count of squares ` `    ``// that can be visited by king in m moves ` `    ``static` `int` `countSquares(``int` `r, ``int` `c, ``int` `m) ` `    ``{ ` `        ``// To store the count of squares ` `        ``int` `squares = 0; ` ` `  `        ``// Check all squares of ` `        ``// the chessboard ` `        ``for` `(``int` `i = 1; i <= 8; i++) { ` `            ``for` `(``int` `j = 1; j <= 8; j++) { ` ` `  `                ``// Check if square (i, j) is ` `                ``// at a distance <= m units ` `                ``// from king's current position ` `                ``if` `(Math.Max(Math.Abs(i - r), Math.Abs(j - c)) <= m) ` `                    ``squares++; ` `            ``} ` `        ``} ` ` `  `        ``// Return count of squares ` `        ``return` `squares; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `r = 4, c = 4, m = 1; ` `        ``Console.Write(countSquares(r, c, m)); ` `    ``} ` `} `

## Python3

 `# Python implementation of the approach ` ` `  `# Function to return the count of squares ` `# that can be visited by king in m moves ` `def` `countSquares(r, c, m): ` ` `  `    ``# To store the count of squares ` `    ``squares ``=` `0` `     `  `    ``# Check all squares of  ` `    ``# the chessboard ` `    ``for` `i ``in` `range` `(``1``, ``9``): ` `        ``for` `j ``in` `range` `(``1``, ``9``): ` `             `  `            ``# Check if square (i, j) is ` `            ``# at a distance <= m units ` `            ``# from king's current position ` `            ``if``(``max``(``abs``(i ``-` `r), ``abs``(j ``-` `c)) <``=` `m): ` `                ``squares ``=` `squares ``+` `1` `         `  `    ``# Return count of squares ` `    ``return` `squares ` ` `  `# Driver code ` `r ``=` `4` `c ``=` `4` `m ``=` `1` ` `  `print``(countSquares(r, c, m)); `

## PHP

 ` `

Output:

```9
```

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : AnkitRai01

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.