Related Articles

# Modular exponentiation (Recursive)

• Difficulty Level : Medium
• Last Updated : 19 Apr, 2021

Given three numbers a, b and c, we need to find (ab) % c
Now why do “% c” after exponentiation, because ab will be really large even for relatively small values of a, b and that is a problem because the data type of the language that we try to code the problem, will most probably not let us store such a large number.
Examples:

```Input : a = 2312 b = 3434 c = 6789
Output : 6343

Input : a = -3 b = 5 c = 89
Output : 24```

The idea is based on below properties.
Property 1:
(m * n) % p has a very interesting property:
(m * n) % p =((m % p) * (n % p)) % p
Property 2:
if b is even:
(a ^ b) % c = ((a ^ b/2) * (a ^ b/2))%c ? this suggests divide and conquer
if b is odd:
(a ^ b) % c = (a * (a ^( b-1))%c
Property 3:
If we have to return the mod of a negative number x whose absolute value is less than y:
then (x + y) % y will do the trick
Note:
Also as the product of (a ^ b/2) * (a ^ b/2) and a * (a ^( b-1) may cause overflow, hence we must be careful about those scenarios

## C++

 `// Recursive C++ program to compute modular power``#include ``using` `namespace` `std;` `int` `exponentMod(``int` `A, ``int` `B, ``int` `C)``{``    ``// Base cases``    ``if` `(A == 0)``        ``return` `0;``    ``if` `(B == 0)``        ``return` `1;` `    ``// If B is even``    ``long` `y;``    ``if` `(B % 2 == 0) {``        ``y = exponentMod(A, B / 2, C);``        ``y = (y * y) % C;``    ``}` `    ``// If B is odd``    ``else` `{``        ``y = A % C;``        ``y = (y * exponentMod(A, B - 1, C) % C) % C;``    ``}` `    ``return` `(``int``)((y + C) % C);``}` `// Driver code``int` `main()``{``    ``int` `A = 2, B = 5, C = 13;``    ``cout << ``"Power is "` `<< exponentMod(A, B, C);``    ``return` `0;``}` `// This code is contributed by SHUBHAMSINGH10`

## C

 `// Recursive C program to compute modular power``#include ` `int` `exponentMod(``int` `A, ``int` `B, ``int` `C)``{``    ``// Base cases``    ``if` `(A == 0)``        ``return` `0;``    ``if` `(B == 0)``        ``return` `1;` `    ``// If B is even``    ``long` `y;``    ``if` `(B % 2 == 0) {``        ``y = exponentMod(A, B / 2, C);``        ``y = (y * y) % C;``    ``}` `    ``// If B is odd``    ``else` `{``        ``y = A % C;``        ``y = (y * exponentMod(A, B - 1, C) % C) % C;``    ``}` `    ``return` `(``int``)((y + C) % C);``}` `// Driver program to test above functions``int` `main()``{``   ``int` `A = 2, B = 5, C = 13;``   ``printf``(``"Power is %d"``, exponentMod(A, B, C));``   ``return` `0;``}`

## Java

 `// Recursive Java program``// to compute modular power``import` `java.io.*;` `class` `GFG``{``static` `int` `exponentMod(``int` `A,``                       ``int` `B, ``int` `C)``{``        ` `    ``// Base cases``    ``if` `(A == ``0``)``        ``return` `0``;``    ``if` `(B == ``0``)``        ``return` `1``;``    ` `    ``// If B is even``    ``long` `y;``    ``if` `(B % ``2` `== ``0``)``    ``{``        ``y = exponentMod(A, B / ``2``, C);``        ``y = (y * y) % C;``    ``}``    ` `    ``// If B is odd``    ``else``    ``{``        ``y = A % C;``        ``y = (y * exponentMod(A, B - ``1``,``                             ``C) % C) % C;``    ``}``    ` `    ``return` `(``int``)((y + C) % C);``}` `// Driver Code``public` `static` `void` `main(String args[])``{``    ``int` `A = ``2``, B = ``5``, C = ``13``;``    ``System.out.println(``"Power is "` `+``                        ``exponentMod(A, B, C));``}``}` `// This code is contributed``// by Swetank Modi.`

## Python3

 `# Recursive Python program``# to compute modular power``def` `exponentMod(A, B, C):``    ` `    ``# Base Cases``    ``if` `(A ``=``=` `0``):``        ``return` `0``    ``if` `(B ``=``=` `0``):``        ``return` `1``    ` `    ``# If B is Even``    ``y ``=` `0``    ``if` `(B ``%` `2` `=``=` `0``):``        ``y ``=` `exponentMod(A, B ``/` `2``, C)``        ``y ``=` `(y ``*` `y) ``%` `C``    ` `    ``# If B is Odd``    ``else``:``        ``y ``=` `A ``%` `C``        ``y ``=` `(y ``*` `exponentMod(A, B ``-` `1``,``                             ``C) ``%` `C) ``%` `C``    ``return` `((y ``+` `C) ``%` `C)` `# Driver Code``A ``=` `2``B ``=` `5``C ``=` `13``print``(``"Power is"``, exponentMod(A, B, C))``    ` `# This code is contributed``# by Swetank Modi.`

## C#

 `// Recursive C# program``// to compute modular power``class` `GFG``{``static` `int` `exponentMod(``int` `A, ``int` `B, ``int` `C)``{``        ` `    ``// Base cases``    ``if` `(A == 0)``        ``return` `0;``    ``if` `(B == 0)``        ``return` `1;``    ` `    ``// If B is even``    ``long` `y;``    ``if` `(B % 2 == 0)``    ``{``        ``y = exponentMod(A, B / 2, C);``        ``y = (y * y) % C;``    ``}``    ` `    ``// If B is odd``    ``else``    ``{``        ``y = A % C;``        ``y = (y * exponentMod(A, B - 1,``                             ``C) % C) % C;``    ``}``    ` `    ``return` `(``int``)((y + C) % C);``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int` `A = 2, B = 5, C = 13;``    ``System.Console.WriteLine(``"Power is "` `+``                    ``exponentMod(A, B, C));``}``}` `// This code is contributed``// by mits`

## PHP

 ``

## Javascript

 ``
Output:
`Power is 6`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up