Open In App
Related Articles

Modular exponentiation (Recursive)

Improve Article
Improve
Save Article
Save
Like Article
Like

Given three numbers a, b and c, we need to find (ab) % c
Now why do “% c” after exponentiation, because ab will be really large even for relatively small values of a, b and that is a problem because the data type of the language that we try to code the problem, will most probably not let us store such a large number.
Examples: 
 

Input : a = 2312 b = 3434 c = 6789
Output : 6343

Input : a = -3 b = 5 c = 89 
Output : 24

Auxiliary Space: O(1)
 

The idea is based on below properties.
Property 1: 
(m * n) % p has a very interesting property: 
(m * n) % p =((m % p) * (n % p)) % p
Property 2: 
if b is even: 
(a ^ b) % c = ((a ^ b/2) * (a ^ b/2))%c ? this suggests divide and conquer 
if b is odd: 
(a ^ b) % c = (a * (a ^( b-1))%c
Property 3: 
If we have to return the mod of a negative number x whose absolute value is less than y: 
then (x + y) % y will do the trick
Note: 
Also as the product of (a ^ b/2) * (a ^ b/2) and a * (a ^( b-1) may cause overflow, hence we must be careful about those scenarios 
 

C++




// Recursive C++ program to compute modular power
#include <bits/stdc++.h>
using namespace std;
 
int exponentMod(int A, int B, int C)
{
    // Base cases
    if (A == 0)
        return 0;
    if (B == 0)
        return 1;
 
    // If B is even
    long y;
    if (B % 2 == 0) {
        y = exponentMod(A, B / 2, C);
        y = (y * y) % C;
    }
 
    // If B is odd
    else {
        y = A % C;
        y = (y * exponentMod(A, B - 1, C) % C) % C;
    }
 
    return (int)((y + C) % C);
}
 
// Driver code
int main()
{
    int A = 2, B = 5, C = 13;
    cout << "Power is " << exponentMod(A, B, C);
    return 0;
}
 
// This code is contributed by SHUBHAMSINGH10


C




// Recursive C program to compute modular power
#include <stdio.h>
 
int exponentMod(int A, int B, int C)
{
    // Base cases
    if (A == 0)
        return 0;
    if (B == 0)
        return 1;
 
    // If B is even
    long y;
    if (B % 2 == 0) {
        y = exponentMod(A, B / 2, C);
        y = (y * y) % C;
    }
 
    // If B is odd
    else {
        y = A % C;
        y = (y * exponentMod(A, B - 1, C) % C) % C;
    }
 
    return (int)((y + C) % C);
}
 
// Driver program to test above functions
int main()
{
   int A = 2, B = 5, C = 13;
   printf("Power is %d", exponentMod(A, B, C));
   return 0;
}


Java




// Recursive Java program
// to compute modular power
import java.io.*;
 
class GFG
{
static int exponentMod(int A,
                       int B, int C)
{
         
    // Base cases
    if (A == 0)
        return 0;
    if (B == 0)
        return 1;
     
    // If B is even
    long y;
    if (B % 2 == 0)
    {
        y = exponentMod(A, B / 2, C);
        y = (y * y) % C;
    }
     
    // If B is odd
    else
    {
        y = A % C;
        y = (y * exponentMod(A, B - 1,
                             C) % C) % C;
    }
     
    return (int)((y + C) % C);
}
 
// Driver Code
public static void main(String args[])
{
    int A = 2, B = 5, C = 13;
    System.out.println("Power is " +
                        exponentMod(A, B, C));
}
}
 
// This code is contributed
// by Swetank Modi.


Python3




# Recursive Python program
# to compute modular power
def exponentMod(A, B, C):
     
    # Base Cases
    if (A == 0):
        return 0
    if (B == 0):
        return 1
     
    # If B is Even
    y = 0
    if (B % 2 == 0):
        y = exponentMod(A, B / 2, C)
        y = (y * y) % C
     
    # If B is Odd
    else:
        y = A % C
        y = (y * exponentMod(A, B - 1,
                             C) % C) % C
    return ((y + C) % C)
 
# Driver Code
A = 2
B = 5
C = 13
print("Power is", exponentMod(A, B, C))
     
# This code is contributed
# by Swetank Modi.


C#




// Recursive C# program
// to compute modular power
class GFG
{
static int exponentMod(int A, int B, int C)
{
         
    // Base cases
    if (A == 0)
        return 0;
    if (B == 0)
        return 1;
     
    // If B is even
    long y;
    if (B % 2 == 0)
    {
        y = exponentMod(A, B / 2, C);
        y = (y * y) % C;
    }
     
    // If B is odd
    else
    {
        y = A % C;
        y = (y * exponentMod(A, B - 1,
                             C) % C) % C;
    }
     
    return (int)((y + C) % C);
}
 
// Driver Code
public static void Main()
{
    int A = 2, B = 5, C = 13;
    System.Console.WriteLine("Power is " +
                    exponentMod(A, B, C));
}
}
 
// This code is contributed
// by mits


PHP




<?php
// Recursive PHP program to
// compute modular power
function exponentMod($A, $B, $C)
{
    // Base cases
    if ($A == 0)
        return 0;
    if ($B == 0)
        return 1;
     
    // If B is even
    if ($B % 2 == 0)
    {
        $y = exponentMod($A, $B / 2, $C);
        $y = ($y * $y) % $C;
    }
     
    // If B is odd
    else
    {
        $y = $A % $C;
        $y = ($y * exponentMod($A, $B - 1,
                               $C) % $C) % $C;
    }
     
    return (($y + $C) % $C);
}
 
 
// Driver Code
$A = 2;
$B = 5;
$C = 13;
echo "Power is " . exponentMod($A, $B, $C);
 
// This code is contributed
// by Swetank Modi.
?>


Javascript




<script>
 
// Recursive Javascript program
// to compute modular power
 
// Function to check if a given
// quadrilateral is valid or not
function exponentMod(A, B, C)
{
     
    // Base cases
    if (A == 0)
        return 0;
    if (B == 0)
        return 1;
     
    // If B is even
    var y;
    if (B % 2 == 0)
    {
        y = exponentMod(A, B / 2, C);
        y = (y * y) % C;
    }
     
    // If B is odd
    else
    {
        y = A % C;
        y = (y * exponentMod(A, B - 1,
                             C) % C) % C;
    }
     
    return parseInt(((y + C) % C));
}
 
// Driver code
var A = 2, B = 5, C = 13;
document.write("Power is " +
               exponentMod(A, B, C));
     
// This code is contributed by Khushboogoyal499
 
</script>


Output: 

Power is 6

 

Time Complexity : O(logn)

Auxiliary Space: O(logn)

Iterative modular exponentiation.
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 06 Mar, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials