# Modular exponentiation (Recursive)

Given three numbers a, b and c, we need to find (ab) % c
Now why do “% c” after exponentiation, because ab will be really large even for relatively small values of a, b and that is a problem because the data type of the language that we try to code the problem, will most probably not let us store such a large number.
Examples:

```Input : a = 2312 b = 3434 c = 6789
Output : 6343

Input : a = -3 b = 5 c = 89
Output : 24```

Auxiliary Space: O(1)

The idea is based on below properties.
Property 1:
(m * n) % p has a very interesting property:
(m * n) % p =((m % p) * (n % p)) % p
Property 2:
if b is even:
(a ^ b) % c = ((a ^ b/2) * (a ^ b/2))%c ? this suggests divide and conquer
if b is odd:
(a ^ b) % c = (a * (a ^( b-1))%c
Property 3:
If we have to return the mod of a negative number x whose absolute value is less than y:
then (x + y) % y will do the trick
Note:
Also as the product of (a ^ b/2) * (a ^ b/2) and a * (a ^( b-1) may cause overflow, hence we must be careful about those scenarios

## C++

 `// Recursive C++ program to compute modular power ` `#include ` `using` `namespace` `std;`   `int` `exponentMod(``int` `A, ``int` `B, ``int` `C) ` `{ ` `    ``// Base cases ` `    ``if` `(A == 0) ` `        ``return` `0; ` `    ``if` `(B == 0) ` `        ``return` `1; `   `    ``// If B is even ` `    ``long` `y; ` `    ``if` `(B % 2 == 0) { ` `        ``y = exponentMod(A, B / 2, C); ` `        ``y = (y * y) % C; ` `    ``} `   `    ``// If B is odd ` `    ``else` `{ ` `        ``y = A % C; ` `        ``y = (y * exponentMod(A, B - 1, C) % C) % C; ` `    ``} `   `    ``return` `(``int``)((y + C) % C); ` `} `   `// Driver code ` `int` `main() ` `{ ` `    ``int` `A = 2, B = 5, C = 13; ` `    ``cout << ``"Power is "` `<< exponentMod(A, B, C); ` `    ``return` `0; ` `} `   `// This code is contributed by SHUBHAMSINGH10`

## C

 `// Recursive C program to compute modular power ` `#include `   `int` `exponentMod(``int` `A, ``int` `B, ``int` `C)` `{` `    ``// Base cases` `    ``if` `(A == 0)` `        ``return` `0;` `    ``if` `(B == 0)` `        ``return` `1;`   `    ``// If B is even` `    ``long` `y;` `    ``if` `(B % 2 == 0) {` `        ``y = exponentMod(A, B / 2, C);` `        ``y = (y * y) % C;` `    ``}`   `    ``// If B is odd` `    ``else` `{` `        ``y = A % C;` `        ``y = (y * exponentMod(A, B - 1, C) % C) % C;` `    ``}`   `    ``return` `(``int``)((y + C) % C);` `}`   `// Driver program to test above functions ` `int` `main() ` `{ ` `   ``int` `A = 2, B = 5, C = 13;` `   ``printf``(``"Power is %d"``, exponentMod(A, B, C)); ` `   ``return` `0; ` `} `

## Java

 `// Recursive Java program ` `// to compute modular power ` `import` `java.io.*; `   `class` `GFG ` `{ ` `static` `int` `exponentMod(``int` `A, ` `                       ``int` `B, ``int` `C) ` `{ ` `        `  `    ``// Base cases ` `    ``if` `(A == ``0``) ` `        ``return` `0``; ` `    ``if` `(B == ``0``) ` `        ``return` `1``; ` `    `  `    ``// If B is even ` `    ``long` `y; ` `    ``if` `(B % ``2` `== ``0``)` `    ``{ ` `        ``y = exponentMod(A, B / ``2``, C); ` `        ``y = (y * y) % C; ` `    ``} ` `    `  `    ``// If B is odd ` `    ``else` `    ``{ ` `        ``y = A % C; ` `        ``y = (y * exponentMod(A, B - ``1``, ` `                             ``C) % C) % C; ` `    ``} ` `    `  `    ``return` `(``int``)((y + C) % C); ` `} `   `// Driver Code` `public` `static` `void` `main(String args[]) ` `{ ` `    ``int` `A = ``2``, B = ``5``, C = ``13``; ` `    ``System.out.println(``"Power is "` `+ ` `                        ``exponentMod(A, B, C)); ` `} ` `} `   `// This code is contributed ` `// by Swetank Modi. `

## Python3

 `# Recursive Python program ` `# to compute modular power ` `def` `exponentMod(A, B, C):` `    `  `    ``# Base Cases` `    ``if` `(A ``=``=` `0``):` `        ``return` `0` `    ``if` `(B ``=``=` `0``):` `        ``return` `1` `    `  `    ``# If B is Even` `    ``y ``=` `0` `    ``if` `(B ``%` `2` `=``=` `0``):` `        ``y ``=` `exponentMod(A, B ``/` `2``, C)` `        ``y ``=` `(y ``*` `y) ``%` `C` `    `  `    ``# If B is Odd` `    ``else``:` `        ``y ``=` `A ``%` `C` `        ``y ``=` `(y ``*` `exponentMod(A, B ``-` `1``, ` `                             ``C) ``%` `C) ``%` `C` `    ``return` `((y ``+` `C) ``%` `C)`   `# Driver Code` `A ``=` `2` `B ``=` `5` `C ``=` `13` `print``(``"Power is"``, exponentMod(A, B, C))` `    `  `# This code is contributed ` `# by Swetank Modi. `

## C#

 `// Recursive C# program ` `// to compute modular power ` `class` `GFG ` `{ ` `static` `int` `exponentMod(``int` `A, ``int` `B, ``int` `C) ` `{ ` `        `  `    ``// Base cases ` `    ``if` `(A == 0) ` `        ``return` `0; ` `    ``if` `(B == 0) ` `        ``return` `1; ` `    `  `    ``// If B is even ` `    ``long` `y; ` `    ``if` `(B % 2 == 0)` `    ``{ ` `        ``y = exponentMod(A, B / 2, C); ` `        ``y = (y * y) % C; ` `    ``} ` `    `  `    ``// If B is odd ` `    ``else` `    ``{ ` `        ``y = A % C; ` `        ``y = (y * exponentMod(A, B - 1, ` `                             ``C) % C) % C; ` `    ``} ` `    `  `    ``return` `(``int``)((y + C) % C); ` `} `   `// Driver Code` `public` `static` `void` `Main() ` `{ ` `    ``int` `A = 2, B = 5, C = 13; ` `    ``System.Console.WriteLine(``"Power is "` `+ ` `                    ``exponentMod(A, B, C)); ` `} ` `} `   `// This code is contributed ` `// by mits`

## PHP

 ``

## Javascript

 ``

Output:

`Power is 6`

Time Complexity : O(logn)

Auxiliary Space: O(logn)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next