Minimum rotations required to get the same string

Given a string, we need to find the minimum number of rotations required to get the same string.

Examples:

Input : s = "geeks"
Output : 5

Input : s = "aaaa"
Output : 1

The idea is based on below post.

A Program to check if strings are rotations of each other or not


Step 1 :
Initialize result = 0 (Here result is count of rotations)
Step 2 : Take a temporary string equals to original string concatenated with itself.
Step 3 : Now take the substring of temporary string of size same as original string starting from second character (or index 1).
Step 4 : Increase the count.
Step 5 : Check whether the substring becomes equal to original string. If yes, then break the loop. Else go to step 2 and repeat it from the next index.

C/C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to determine minimum number
// of rotations required to yield same
// string.
#include <iostream>
using namespace std;
  
// Returns count of rotations to get the
// same string back.
int findRotations(string str)
{
    // tmp is the concatenated string.
    string tmp = str + str;
    int n = str.length();
  
    for (int i = 1; i <= n; i++) {
  
        // substring from i index of original
        // string size.
        string substring = tmp.substr(i, str.size());
  
        // if substring matches with original string
        // then we will come out of the loop.
        if (str == substring)
            return i;
    }
    return n;
}
  
// Driver code
int main()
{
    string str = "abc";
    cout << findRotations(str) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to determine minimum number
// of rotations required to yield same
// string.
  
import java.util.*;
  
class GFG
{
    // Returns count of rotations to get the
    // same string back.
    static int findRotations(String str)
    {
        // tmp is the concatenated string.
        String tmp = str + str;
        int n = str.length();
      
        for (int i = 1; i <= n; i++)
        {
      
            // substring from i index of original
            // string size.
              
            String substring = tmp.substring(i, str.length());
      
            // if substring matches with original string
            // then we will come out of the loop.
            if (str == substring)
                return i;
        }
        return n;
    }
  
    // Driver Method
    public static void main(String[] args)
    {
            String str = "abc";
        System.out.println(findRotations(str));
    }
}
/* This code is contributed by Mr. Somesh Awasthi */

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to determine minimum 
# number of rotations required to yield 
# same string.
  
# Returns count of rotations to get the
# same string back.
def findRotations(str):
      
    # tmp is the concatenated string.
    tmp = str + str
    n = len(str)
  
    for i in range(1, n + 1):
          
        # substring from i index of 
        # original string size.
        substring = tmp[i: n]
  
        # if substring matches with 
        # original string then we will 
        # come out of the loop.
        if (str == substring):
            return i
    return n
  
# Driver code
if __name__ == '__main__':
  
    str = "abc"
    print(findRotations(str))
  
# This code is contributed 
# by 29AjayKumar.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to determine minimum number
// of rotations required to yield same
// string.
using System;
  
class GFG {
      
    // Returns count of rotations to get
    // the same string back.
    static int findRotations(String str)
    {
          
        // tmp is the concatenated string.
        String tmp = str + str;
        int n = str.Length;
      
        for (int i = 1; i <= n; i++)
        {
      
            // substring from i index of
            // original string size.
              
            String substring = 
                 tmp.Substring(i, str.Length);
      
            // if substring matches with
            // original string then we will
            // come out of the loop.
            if (str == substring)
                return i;
        }
          
        return n;
    }
  
    // Driver Method
    public static void Main()
    {
        String str = "abc";
          
        Console.Write(findRotations(str));
    }
}
  
// This code is contributed by nitin mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to determine minimum 
// number of rotations required to 
// yield same string. 
  
// Returns count of rotations 
// to get the same string back. 
function findRotations($str
    // tmp is the concatenated string. 
    $tmp = ($str + $str); 
    $n = strlen($str); 
  
    for ( $i = 1; $i <= $n; $i++)
    
  
        // substring from i index 
        // of original string size. 
        $substring = $tmp.substr($i
                          strlen($str)); 
  
        // if substring matches with 
        // original string then we will 
        // come out of the loop. 
        if ($str == $substring
            return $i
    
    return $n
  
// Driver code 
$str = "abc"
echo findRotations($str), "\n"
  
// This code is contributed 
// by Sachin
?>

chevron_right



Output:

3

Time Complexity: O(n2)

This article is contributed by Jatin Goyal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.