# Minimum rotations required to get the same string

Given a string, we need to find the minimum number of rotations required to get the same string.

Examples:

```Input : s = "geeks"
Output : 5

Input : s = "aaaa"
Output : 1```

The idea is based on below post.
A Program to check if strings are rotations of each other or not

• Step 1 : Initialize result = 0 (Here result is count of rotations)
• Step 2 : Take a temporary string equals to original string concatenated with itself.
• Step 3 : Now take the substring of temporary string of size same as original string starting from second character (or index 1).
• Step 4 : Increase the count.
• Step 5 : Check whether the substring becomes equal to original string. If yes, then break the loop. Else go to step 2 and repeat it from the next index.

Implementation:

## C++

 `// C++ program to determine minimum number ` `// of rotations required to yield same ` `// string. ` `#include ` `using` `namespace` `std; `   `// Returns count of rotations to get the ` `// same string back. ` `int` `findRotations(string str) ` `{ ` `    ``// tmp is the concatenated string. ` `    ``string tmp = str + str; ` `    ``int` `n = str.length(); `   `    ``for` `(``int` `i = 1; i <= n; i++) { `   `        ``// substring from i index of original ` `        ``// string size. ` `        ``string substring = tmp.substr(i, str.size()); `   `        ``// if substring matches with original string ` `        ``// then we will come out of the loop. ` `        ``if` `(str == substring) ` `            ``return` `i; ` `    ``} ` `    ``return` `n; ` `} `   `// Driver code ` `int` `main() ` `{ ` `    ``string str = ``"abc"``; ` `    ``cout << findRotations(str) << endl; ` `    ``return` `0; ` `} `

## Java

 `// Java program to determine minimum number ` `// of rotations required to yield same ` `// string. `   `import` `java.util.*; `   `class` `GFG ` `{ ` `    ``// Returns count of rotations to get the ` `    ``// same string back. ` `    ``static` `int` `findRotations(String str) ` `    ``{ ` `        ``// tmp is the concatenated string. ` `        ``String tmp = str + str; ` `        ``int` `n = str.length(); ` `    `  `        ``for` `(``int` `i = ``1``; i <= n; i++) ` `        ``{ ` `    `  `            ``// substring from i index of original ` `            ``// string size. ` `            `  `            ``String substring = tmp.substring(` `                      ``i, i+str.length()); ` `    `  `            ``// if substring matches with original string ` `            ``// then we will come out of the loop. ` `            ``if` `(str.equals(substring)) ` `                ``return` `i; ` `        ``} ` `        ``return` `n; ` `    ``} `   `    ``// Driver Method ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `            ``String str = ``"aaaa"``; ` `        ``System.out.println(findRotations(str)); ` `    ``} ` `} ` `/* This code is contributed by Mr. Somesh Awasthi */`

## Python3

 `# Python 3 program to determine minimum ` `# number of rotations required to yield ` `# same string.`   `# Returns count of rotations to get the` `# same string back.` `def` `findRotations(``str``):` `    `  `    ``# tmp is the concatenated string.` `    ``tmp ``=` `str` `+` `str` `    ``n ``=` `len``(``str``)`   `    ``for` `i ``in` `range``(``1``, n ``+` `1``):` `        `  `        ``# substring from i index of ` `        ``# original string size.` `        ``substring ``=` `tmp[i: i``+``n]`   `        ``# if substring matches with ` `        ``# original string then we will ` `        ``# come out of the loop.` `        ``if` `(``str` `=``=` `substring):` `            ``return` `i` `    ``return` `n`   `# Driver code` `if` `__name__ ``=``=` `'__main__'``:`   `    ``str` `=` `"abc"` `    ``print``(findRotations(``str``))`   `# This code is contributed ` `# by 29AjayKumar.`

## C#

 `// C# program to determine minimum number` `// of rotations required to yield same` `// string.` `using` `System;`   `class` `GFG {` `    `  `    ``// Returns count of rotations to get` `    ``// the same string back.` `    ``static` `int` `findRotations(String str)` `    ``{` `        `  `        ``// tmp is the concatenated string.` `        ``String tmp = str + str;` `        ``int` `n = str.Length;` `    `  `        ``for` `(``int` `i = 1; i <= n; i++)` `        ``{` `    `  `            ``// substring from i index of` `            ``// original string size.` `            `  `            ``String substring = ` `                 ``tmp.Substring(i, str.Length);` `    `  `            ``// if substring matches with` `            ``// original string then we will` `            ``// come out of the loop.` `            ``if` `(str == substring)` `                ``return` `i;` `        ``}` `        `  `        ``return` `n;` `    ``}`   `    ``// Driver Method` `    ``public` `static` `void` `Main()` `    ``{` `        ``String str = ``"abc"``;` `        `  `        ``Console.Write(findRotations(str));` `    ``}` `}`   `// This code is contributed by nitin mittal.`

## PHP

 ``

## Javascript

 ``

Output

`3`

Time Complexity: O(n2)
Auxiliary Space : O(n)

We can solve this problem without using any temporary variable as extra space . We will traverse the original string  and at each position we partition it and concatenate the right substring and left substring and check whether it is equal to original string

Implementation:

## C++

 `// C++ program to determine minimum number ` `// of rotations required to yield same ` `// string. ` `#include ` `using` `namespace` `std; `   `// Returns count of rotations to get the ` `// same string back. ` `int` `findRotations(string str) ` `{ ` `    ``int` `ans = 0; ``//to store the answer` `      ``int` `n = str.length(); ``//length of the string` `      `  `      ``//All the length where we can partition` `      ``for``(``int` `i=1;i

## Java

 `// Java program to determine minimum number` `// of rotations required to yield same` `// string.`   `import` `java.util.*;`   `class` `GFG` `{` `    ``// Returns count of rotations to get the` `    ``// same string back.` `    ``static` `int` `findRotations(String str)` `    ``{` `        ``int` `ans = ``0``; ``//to store the answer` `        ``int` `n = str.length(); ``//length of the string` `           `  `          ``//All the length where we can partition` `        ``for``(``int` `i=``1``;i

## Python3

 `# Python program to determine minimum number ` `# of rotations required to yield same ` `# string. `   `# Returns count of rotations to get the ` `# same string back. ` `def` `findRotations(``Str``): `   `    ``ans ``=` `0` `# to store the answer` `    ``n ``=` `len``(``Str``) ``# length of the String` `      `  `    ``# All the length where we can partition` `    ``for` `i ``in` `range``(``1` `, ``len``(``Str``) ``-` `1``):`   `        ``# right part + left part = rotated String` `        ``# we are checking whether the rotated String is equal to ` `        ``# original String` `        ``if``(``Str``[i: n] ``+` `Str``[``0``: i]  ``=``=` `Str``):` `            ``ans ``=` `i` `            ``break`   `    ``if``(ans ``=``=` `0``):` `        ``return` `n` `    ``return` `ans`   `# Driver code ` `Str` `=` `"abc"` `print``(findRotations(``Str``))`   `# This code is contributed by shinjanpatra`

## C#

 `// C# program to determine minimum number` `// of rotations required to yield same` `// string.` `using` `System;` ` `  `class` `GFG {` `     `  `    ``// Returns count of rotations to get` `    ``// the same string back.` `    ``static` `int` `findRotations(String str)` `    ``{` `        `  `        ``int` `ans = 0; ``//to store the answer` `        ``int` `n = str.Length; ``//length of the string` `       `  `          ``//All the length where we can partition` `          ``for``(``int` `i=1;i

## Javascript

 ``

Output

`3`

Time Complexity: O(n2)
Auxiliary Space: O(1)

Alternate Implementation in Python :

## C++

 `// C++ program to determine minimum` `// number of rotations required to yield` `// same string.` `#include ` `using` `namespace` `std;`   `// Driver program` `int` `main()` `{` `    ``string String = ``"aaaa"``;` `    ``string check = ``""``;`   `    ``for``(``int` `r = 1; r < String.length() + 1; r++)` `    ``{` `       `  `        ``// checking the input after each rotation` `        ``check = String.substr(0, r) + String.substr(r, String.length()-r);` `    `  `        ``// following if statement checks if input is` `        ``// equals to check , if yes it will print r and` `        ``// break out of the loop` `        ``if``(check == String){` `            ``cout<

## Java

 `/*package whatever //do not write package name here */`   `import` `java.io.*;`   `class` `GFG {` `    ``public` `static` `void` `main (String[] args) {` `       ``String string = ``"aaaa"``;` `    ``String check = ``""``;`   `    ``for``(``int` `r = ``1``; r < string.length() + ``1``; r++)` `    ``{` `       `  `        ``// checking the input after each rotation` `        ``check = string.substring(``0``, r) + string.substring(r, string.length());` `    `  `        ``// following if statement checks if input is` `        ``// equals to check , if yes it will print r and` `        ``// break out of the loop` `        ``if``(check.equals(string)){` `            ``System.out.println(r);` `            ``break``;` `        ``}` `    ``}` `    ``}` `}`

## Python3

 `# Python 3 program to determine minimum ` `# number of rotations required to yield ` `# same string.` ` `  `# input` `string ``=` `'aaaa'` `check ``=` `''` ` `  `for` `r ``in` `range``(``1``, ``len``(string)``+``1``):` `  ``# checking the input after each rotation` `  ``check ``=` `string[r:] ``+` `string[:r]` `   `  `  ``# following if statement checks if input is ` `  ``# equals to check , if yes it will print r and ` `  ``# break out of the loop` `  ``if` `check ``=``=` `string:` `    ``print``(r)` `    ``break` ` `  `# This code is contributed ` `# by nagasowmyanarayanan.`

## C#

 `// C# program to determine minimum number` `// of rotations required to yield same` `// string.` `using` `System;` ` `  `class` `GFG {` `    ``// Driver Method` `    ``public` `static` `void` `Main()` `    ``{` `        ``String str = ``"aaaa"``;` `        ``String check = ``""``;` `        ``for``(``int` `r = 1; r < str.Length + 1; r++)` `        ``{` `            `  `            ``// checking the input after each rotation` `            ``check = str.Substring(0, r) + str.Substring(r, str.Length-r);` `         `  `            ``// following if statement checks if input is` `            ``// equals to check , if yes it will print r and` `            ``// break out of the loop` `            ``if``(check == str){` `                ``Console.Write(r);` `                ``break``;` `            ``}` `        ``}` `    ``}` `}` ` `  `// This code is contributed by Aarti_Rathi`

## Javascript

 ``

Output

`1`

Time Complexity: O(n2), n as length of string
Auxiliary Space: O(n), n as length of string

If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next