Skip to content
Related Articles

Related Articles

Maximum width of a Binary Tree

View Discussion
Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 08 Aug, 2022
View Discussion
Improve Article
Save Article

Given a binary tree, the task is to find the maximum width of the given tree. Width of a tree is maximum of widths of all levels. 

Example: 

Input:
             1
          /   \
       2      3
    /   \       \
 4     5       8 
              /     \
           6        7
Output:  3
Explanation: For the above tree, 
width of level 1 is 1, 
width of level 2 is 2, 
width of level 3 is 3 
width of level 4 is 2. 
So the maximum width of the tree is 3.

Recommended Practice

Maximum Width using Level Order Traversal:

To get the width of each level we can use the level order traversal. The maximum among the width of all levels is the required answer.

Level Order Traversal without queue:

This method mainly involves two functions:

  • One is to count nodes at a given level (getWidth), and 
  • The other is to get the maximum width of the tree(getMaxWidth). getMaxWidth() makes use of getWidth() to get the width of all levels starting from root.

Given below are the pseudo codes for the mentioned functions.

getMaxWidth(tree)
maxWdth = 0
for i = 1 to height(tree)
    width =   getWidth(tree, i);
    if(width > maxWdth) 
        maxWdth  = width
return maxWidth

getWidth(tree, level)
if tree is NULL then return 0;
if level is 1, then return 1;  
else if level greater than 1, then
    return getWidth(tree->left, level-1) + 
                getWidth(tree->right, level-1);

Below is the implementation of the above idea:

C++




// C++ program to calculate width of binary tree
#include <bits/stdc++.h>
using namespace std;
  
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class node {
public:
    int data;
    node* left;
    node* right;
    node (int d){
      this->data = d;
      this->left = this->right = NULL;
    }
};
  
/*Function prototypes*/
int getWidth(node* root, int level);
int height(node* node);
  
/* Function to get the maximum width of a binary tree*/
int getMaxWidth(node* root)
{
    int maxWidth = 0;
    int width;
    int h = height(root);
    int i;
  
    /* Get width of each level and compare
        the width with maximum width so far */
    for (i = 1; i <= h; i++) {
        width = getWidth(root, i);
        if (width > maxWidth)
            maxWidth = width;
    }
  
    return maxWidth;
}
  
/* Get width of a given level */
int getWidth(node* root, int level)
{
    if (root == NULL)
        return 0;
    if (level == 1)
        return 1;
    else if (level > 1)
        return getWidth(root->left, level - 1)
               + getWidth(root->right, level - 1);
}
  
/* UTILITY FUNCTIONS */
/* Compute the "height" of a tree -- the number of
    nodes along the longest path from the root node
    down to the farthest leaf node.*/
int height(node* node)
{
    if (node == NULL)
        return 0;
    else {
        /* compute the height of each subtree */
        int lHeight = height(node->left);
        int rHeight = height(node->right);
        /* use the larger one */
  
        return (lHeight > rHeight) ? (lHeight + 1)
                                   : (rHeight + 1);
    }
}
  
/* Driver code*/
int main()
{
    node* root = new node(1);
    root->left = new node(2);
    root->right = new node(3);
    root->left->left = new node(4);
    root->left->right = new node(5);
    root->right->right = new node(8);
    root->right->right->left = new node(6);
    root->right->right->right = new node(7);
  
    /*
    Constructed binary tree is:
            1
            / \
        2 3
        / \ \
        4 5 8
                / \
                6 7
    */
  
    // Function call
    cout << "Maximum width is " << getMaxWidth(root)
         << endl;
    return 0;
}
  
// This code is contributed by rathbhupendra

C




// C program to calculate width of binary tree
#include <stdio.h>
#include <stdlib.h>
  
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
struct node {
    int data;
    struct node* left;
    struct node* right;
};
  
/*Function prototypes*/
int getWidth(struct node* root, int level);
int height(struct node* node);
struct node* newNode(int data);
  
/* Function to get the maximum width of a binary tree*/
int getMaxWidth(struct node* root)
{
    int maxWidth = 0;
    int width;
    int h = height(root);
    int i;
  
    /* Get width of each level and compare
       the width with maximum width so far */
    for (i = 1; i <= h; i++) {
        width = getWidth(root, i);
        if (width > maxWidth)
            maxWidth = width;
    }
  
    return maxWidth;
}
  
/* Get width of a given level */
int getWidth(struct node* root, int level)
{
  
    if (root == NULL)
        return 0;
  
    if (level == 1)
        return 1;
  
    else if (level > 1)
        return getWidth(root->left, level - 1)
               + getWidth(root->right, level - 1);
}
  
/* UTILITY FUNCTIONS */
/* Compute the "height" of a tree -- the number of
    nodes along the longest path from the root node
    down to the farthest leaf node.*/
int height(struct node* node)
{
    if (node == NULL)
        return 0;
    else {
        /* compute the height of each subtree */
        int lHeight = height(node->left);
        int rHeight = height(node->right);
        /* use the larger one */
  
        return (lHeight > rHeight) ? (lHeight + 1)
                                   : (rHeight + 1);
    }
}
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
struct node* newNode(int data)
{
    struct node* node
        = (struct node*)malloc(sizeof(struct node));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
    return (node);
}
/* Driver code*/
int main()
{
    struct node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->right = newNode(8);
    root->right->right->left = newNode(6);
    root->right->right->right = newNode(7);
  
    /*
     Constructed binary tree is:
            1
          /  \
         2    3
       /  \     \
      4   5     8
                /  \
               6   7
    */
    
    // Function call
    printf("Maximum width is %d \n", getMaxWidth(root));
    getchar();
    return 0;
}

Java




// Java program to calculate width of binary tree
  
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
class Node {
    int data;
    Node left, right;
  
    Node(int item)
    {
        data = item;
        left = right = null;
    }
}
  
class BinaryTree {
    Node root;
  
    /* Function to get the maximum width of a binary tree*/
    int getMaxWidth(Node node)
    {
        int maxWidth = 0;
        int width;
        int h = height(node);
        int i;
  
        /* Get width of each level and compare
           the width with maximum width so far */
        for (i = 1; i <= h; i++) {
            width = getWidth(node, i);
            if (width > maxWidth)
                maxWidth = width;
        }
  
        return maxWidth;
    }
  
    /* Get width of a given level */
    int getWidth(Node node, int level)
    {
        if (node == null)
            return 0;
  
        if (level == 1)
            return 1;
        else if (level > 1)
            return getWidth(node.left, level - 1)
                + getWidth(node.right, level - 1);
        return 0;
    }
  
    /* UTILITY FUNCTIONS */
  
    /* Compute the "height" of a tree -- the number of
     nodes along the longest path from the root node
     down to the farthest leaf node.*/
    int height(Node node)
    {
        if (node == null)
            return 0;
        else {
            /* compute the height of each subtree */
            int lHeight = height(node.left);
            int rHeight = height(node.right);
  
            /* use the larger one */
            return (lHeight > rHeight) ? (lHeight + 1)
                                       : (rHeight + 1);
        }
    }
  
    /* Driver code */
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
  
        /*
        Constructed binary tree is:
              1
            /  \
           2    3
         /  \    \
        4   5     8
                 /  \
                6   7
         */
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
        tree.root.right.right = new Node(8);
        tree.root.right.right.left = new Node(6);
        tree.root.right.right.right = new Node(7);
  
        // Function call
        System.out.println("Maximum width is "
                           + tree.getMaxWidth(tree.root));
    }
}
  
// This code has been contributed by Mayank Jaiswal

Python3




# Python program to find the maximum width of
# binary tree using Level Order Traversal.
  
# A binary tree node
  
  
class Node:
  
    # Constructor to create a new node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
  
# Function to get the maximum width of a binary tree
  
  
def getMaxWidth(root):
    maxWidth = 0
    h = height(root)
    # Get width of each level and compare the
    # width with maximum width so far
    for i in range(1, h+1):
        width = getWidth(root, i)
        if (width > maxWidth):
            maxWidth = width
    return maxWidth
  
# Get width of a given level
  
  
def getWidth(root, level):
    if root is None:
        return 0
    if level == 1:
        return 1
    elif level > 1:
        return (getWidth(root.left, level-1) +
                getWidth(root.right, level-1))
  
# UTILITY FUNCTIONS
# Compute the "height" of a tree -- the number of
# nodes along the longest path from the root node
# down to the farthest leaf node.
  
  
def height(node):
    if node is None:
        return 0
    else:
  
        # compute the height of each subtree
        lHeight = height(node.left)
        rHeight = height(node.right)
  
        # use the larger one
        return (lHeight+1) if (lHeight > rHeight) else (rHeight+1)
  
  
# Driver code
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.right = Node(8)
root.right.right.left = Node(6)
root.right.right.right = Node(7)
  
"""
Constructed binary tree is:
    1
    / \
    2 3
    / \     \
4 5 8 
        / \
        6 7
"""
# Function call
print ("Maximum width is %d" % (getMaxWidth(root)))
  
# This code is contributed by Naveen Aili

C#




// C# program to calculate width of binary tree
using System;
  
/* A binary tree node has data, pointer to left child
and a pointer to right child */
public class Node {
    public int data;
    public Node left, right;
  
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
  
public class BinaryTree {
    public Node root;
  
    /* Function to get the maximum width of a binary tree*/
    public virtual int getMaxWidth(Node node)
    {
        int maxWidth = 0;
        int width;
        int h = height(node);
        int i;
  
        /* Get width of each level and compare
        the width with maximum width so far */
        for (i = 1; i <= h; i++) {
            width = getWidth(node, i);
            if (width > maxWidth) {
                maxWidth = width;
            }
        }
  
        return maxWidth;
    }
  
    /* Get width of a given level */
    public virtual int getWidth(Node node, int level)
    {
        if (node == null) {
            return 0;
        }
  
        if (level == 1) {
            return 1;
        }
        else if (level > 1) {
            return getWidth(node.left, level - 1)
                + getWidth(node.right, level - 1);
        }
        return 0;
    }
  
    /* UTILITY FUNCTIONS */
  
    /* Compute the "height" of a tree -- the number of
    nodes along the longest path from the root node
    down to the farthest leaf node.*/
    public virtual int height(Node node)
    {
        if (node == null) {
            return 0;
        }
        else {
            /* compute the height of each subtree */
            int lHeight = height(node.left);
            int rHeight = height(node.right);
  
            /* use the larger one */
            return (lHeight > rHeight) ? (lHeight + 1)
                                       : (rHeight + 1);
        }
    }
  
    /* Driver code */
    public static void Main(string[] args)
    {
        BinaryTree tree = new BinaryTree();
  
        /*
        Constructed binary tree is:
            1
            / \
        2 3
        / \ \
        4 5     8
                / \
                6 7
        */
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
        tree.root.right.right = new Node(8);
        tree.root.right.right.left = new Node(6);
        tree.root.right.right.right = new Node(7);
   
        // Function call
        Console.WriteLine("Maximum width is "
                          + tree.getMaxWidth(tree.root));
    }
}
  
// This code is contributed by Shrikant13

Javascript




<script>
  
// JavaScript program to calculate width of binary tree
  
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
class Node {
    constructor(val) {
        this.data = val;
        this.left = null;
        this.right = null;
    }
}
    var root;
  
    /* Function to get the maximum width of a binary tree*/
    function getMaxWidth(node)
    {
        var maxWidth = 0;
        var width;
        var h = height(node);
        var i;
  
        /* Get width of each level and compare
           the width with maximum width so far */
        for (i = 1; i <= h; i++) {
            width = getWidth(node, i);
            if (width > maxWidth)
                maxWidth = width;
        }
  
        return maxWidth;
    }
  
    /* Get width of a given level */
    function getWidth(node , level)
    {
        if (node == null)
            return 0;
  
        if (level == 1)
            return 1;
        else if (level > 1)
            return getWidth(node.left, level - 1)
                + getWidth(node.right, level - 1);
        return 0;
    }
  
    /* UTILITY FUNCTIONS */
  
    /* Compute the "height" of a tree -- the number of
     nodes along the longest path from the root node
     down to the farthest leaf node.*/
    function height(node)
    {
        if (node == null)
            return 0;
        else {
            /* compute the height of each subtree */
            var lHeight = height(node.left);
            var rHeight = height(node.right);
  
            /* use the larger one */
            return (lHeight > rHeight) ? (lHeight + 1)
                                       : (rHeight + 1);
        }
    }
  
    /* Driver code */
      
        /*
        Constructed binary tree is:
              1
            /  \
           2    3
         /  \    \
        4   5     8
                 /  \
                6   7
         */
        root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
        root.left.left = new Node(4);
        root.left.right = new Node(5);
        root.right.right = new Node(8);
        root.right.right.left = new Node(6);
        root.right.right.right = new Node(7);
  
        // Function call
        document.write("Maximum width is "
                           + getMaxWidth(root));
// This code is contributed by todaysgaurav 
  
</script>

Output

Maximum width is 3

Time Complexity: O(N2) in the worst case.
Auxiliary Space: O(1)

We can use Queue based level order traversal to optimize the time complexity of this method. The Queue based level order traversal will take O(N) time in worst case. Thanks to Nitish, DivyaC and tech.login.id2 for suggesting this optimization. 

Level Order Traversal using Queue

When a queue is used, we can count all the nodes in a level in constant time. This reduces the complexity to be a linear one. 

In this method do the following:

  • Store all the child nodes at the current level in the queue. 
    • Count the total number of nodes after the level order traversal for a particular level is completed. 
    • Since the queue now contains all the nodes of the next level, we can easily find out the total number of nodes in the next level by finding the size of the queue. 
  • Follow the same procedure for the successive levels. 
  • Store and update the maximum number of nodes found at each level.

Below is the implementation of the above approach.

C++




// A queue based C++ program to find maximum width
// of a Binary Tree
#include <bits/stdc++.h>
using namespace std;
  
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
struct Node {
    int data;
    struct Node* left;
    struct Node* right;
    Node(int d)
    {
        this->data = d;
        this->left = this->right = NULL;
    }
};
  
// Function to find the maximum width of the tree
// using level order traversal
int maxWidth(struct Node* root)
{
    // Base case
    if (root == NULL)
        return 0;
  
    // Initialize result
    int result = 0;
  
    // Do Level order traversal keeping track of number
    // of nodes at every level.
    queue<Node*> q;
    q.push(root);
    while (!q.empty()) {
        // Get the size of queue when the level order
        // traversal for one level finishes
        int count = q.size();
  
        // Update the maximum node count value
        result = max(count, result);
  
        // Iterate for all the nodes in the queue currently
        while (count--) {
            // Dequeue an node from queue
            Node* temp = q.front();
            q.pop();
  
            // Enqueue left and right children of
            // dequeued node
            if (temp->left != NULL)
                q.push(temp->left);
            if (temp->right != NULL)
                q.push(temp->right);
        }
    }
  
    return result;
}
  
// Driver code
int main()
{
    struct Node* root = new Node(1);
    root->left = new Node(2);
    root->right = new Node(3);
    root->left->left = new Node(4);
    root->left->right = new Node(5);
    root->right->right = new Node(8);
    root->right->right->left = new Node(6);
    root->right->right->right = new Node(7);
  
    /*   Constructed Binary tree is:
                 1
               /   \
             2      3
           /  \      \
          4    5      8
                    /   \
                   6     7    */
  
    // Function call
    cout << "Maximum width is " << maxWidth(root) << endl;
    return 0;
}
  
// This code is contributed by Nikhil Kumar
// Singh(nickzuck_007)

Java




// Java program to calculate maximum width
// of a binary tree using queue
import java.util.LinkedList;
import java.util.Queue;
  
public class maxwidthusingqueue 
{
    /* A binary tree node has data, pointer to
       left child and a pointer to right child */
    static class node 
    {
        int data;
        node left, right;
  
        public node(int data) { this.data = data; }
    }
  
    // Function to find the maximum width of
    // the tree using level order traversal
    static int maxwidth(node root)
    {
        // Base case
        if (root == null)
            return 0;
  
        // Initialize result
        int maxwidth = 0;
  
        // Do Level order traversal keeping
        // track of number of nodes at every level
        Queue<node> q = new LinkedList<>();
        q.add(root);
        while (!q.isEmpty()) 
        {
            // Get the size of queue when the level order
            // traversal for one level finishes
            int count = q.size();
  
            // Update the maximum node count value
            maxwidth = Math.max(maxwidth, count);
  
            // Iterate for all the nodes in
            // the queue currently
            while (count-- > 0) {
                // Dequeue an node from queue
                node temp = q.remove();
  
                // Enqueue left and right children
                // of dequeued node
                if (temp.left != null)
                {
                    q.add(temp.left);
                }
                if (temp.right != null)
                {
                    q.add(temp.right);
                }
            }
        }
        return maxwidth;
    }
    
      
    // Function call
    public static void main(String[] args)
    {
        node root = new node(1);
        root.left = new node(2);
        root.right = new node(3);
        root.left.left = new node(4);
        root.left.right = new node(5);
        root.right.right = new node(8);
        root.right.right.left = new node(6);
        root.right.right.right = new node(7);
  
        /*   Constructed Binary tree is:
        1
      /   \
    2      3
  /  \      \
 4    5      8
           /   \
          6     7    */
  
        // Function call
        System.out.println("Maximum width = "
                           + maxwidth(root));
    }
}
  
// This code is contributed by Rishabh Mahrsee

Python3




# Python program to find the maximum width of binary
# tree using Level Order Traversal with queue.
  
from _collections import deque
  
# A binary tree node
class Node:
  
    # Constructor to create a new node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
  
# Function to get the maximum width of a binary tree
  
  
def getMaxWidth(root):
    # base case
    if root is None:
        return 0
    q = deque()
    maxWidth = 0
  
    q.append(root)
  
    while q:
        # Get the size of queue when the level order
        # traversal for one level finishes
        count = len(q)
  
        # Update the maximum node count value
        maxWidth = max(count, maxWidth)
  
        while (count is not 0):
            count = count-1
            temp = q.popleft()
            if temp.left is not None:
                q.append(temp.left)
  
            if temp.right is not None:
                q.append(temp.right)
  
    return maxWidth
  
  
# Driver program to test above function
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.right = Node(8)
root.right.right.left = Node(6)
root.right.right.right = Node(7)
  
"""
Constructed binary tree is:
       1
      / \
     2   3
    / \    \
   4   5   8 
          / \
         6   7
"""
# Function call
print ("Maximum width is %d" % (getMaxWidth(root)))
  
# This code is contributed by Naveen Aili

C#




// C# program to calculate maximum width
// of a binary tree using queue
using System;
using System.Collections.Generic;
  
public class maxwidthusingqueue 
{
    /* A binary tree node has data, pointer to
    left child and a pointer to right child */
    public class node 
    {
        public int data;
        public node left, right;
  
        public node(int data) { this.data = data; }
    }
  
    // Function to find the maximum width of
    // the tree using level order traversal
    static int maxwidth(node root)
    {
        // Base case
        if (root == null)
            return 0;
  
        // Initialize result
        int maxwidth = 0;
  
        // Do Level order traversal keeping
        // track of number of nodes at every level
        Queue<node> q = new Queue<node>();
        q.Enqueue(root);
        while (q.Count != 0) 
        {
            // Get the size of queue when the level order
            // traversal for one level finishes
            int count = q.Count;
  
            // Update the maximum node count value
            maxwidth = Math.Max(maxwidth, count);
  
            // Iterate for all the nodes in
            // the queue currently
            while (count-- > 0) {
                // Dequeue an node from queue
                node temp = q.Dequeue();
  
                // Enqueue left and right children
                // of dequeued node
                if (temp.left != null
                {
                    q.Enqueue(temp.left);
                }
                if (temp.right != null
                {
                    q.Enqueue(temp.right);
                }
            }
        }
        return maxwidth;
    }
  
    // Driver code
    public static void Main(String[] args)
    {
        node root = new node(1);
        root.left = new node(2);
        root.right = new node(3);
        root.left.left = new node(4);
        root.left.right = new node(5);
        root.right.right = new node(8);
        root.right.right.left = new node(6);
        root.right.right.right = new node(7);
  
        /* Constructed Binary tree is:
        1
      /   \
     2     3
    / \     \
    4 5     8
           / \
           6 7 */
  
        Console.WriteLine("Maximum width = "
                          + maxwidth(root));
    }
}
  
// This code is contributed by Princi Singh

Javascript




<script>
  
    // JavaScript program to calculate maximum width
    // of a binary tree using queue
      
    class node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
  
    // Function to find the maximum width of
    // the tree using level order traversal
    function maxwidth(root)
    {
        // Base case
        if (root == null)
            return 0;
   
        // Initialize result
        let maxwidth = 0;
   
        // Do Level order traversal keeping
        // track of number of nodes at every level
        let q = [];
        q.push(root);
        while (q.length > 0)
        {
            // Get the size of queue when the level order
            // traversal for one level finishes
            let count = q.length;
   
            // Update the maximum node count value
            maxwidth = Math.max(maxwidth, count);
   
            // Iterate for all the nodes in
            // the queue currently
            while (count-- > 0) {
                // Dequeue an node from queue
                let temp = q.shift();
   
                // Enqueue left and right children
                // of dequeued node
                if (temp.left != null)
                {
                    q.push(temp.left);
                }
                if (temp.right != null)
                {
                    q.push(temp.right);
                }
            }
        }
        return maxwidth;
    }
      
    let root = new node(1);
    root.left = new node(2);
    root.right = new node(3);
    root.left.left = new node(4);
    root.left.right = new node(5);
    root.right.right = new node(8);
    root.right.right.left = new node(6);
    root.right.right.right = new node(7);
  
    /*   Constructed Binary tree is:
          1
        /   \
      2      3
    /  \      \
   4    5      8
             /   \
            6     7    */
  
    // Function call
    document.write("Maximum width is "
                       + maxwidth(root));
      
</script>

Output

Maximum width is 3

Time Complexity: O(N) where N is the total number of nodes in the tree. Every node of the tree is processed once and hence the complexity is O(N).
Auxiliary Space: O(w) where w is the maximum width of the tree. 

Maximum width Using Preorder Traversal:

The idea behind this approach is to find the level of a node and increment the count of nodes for that level. The number of nodes present at a certain level is the width of that level.

For traversal we can here use the preorder traverasl.

Follow the steps mentioned below to implement the approach:

  • Create a temporary array count[] of size equal to the height of the tree. 
  • Initialize all values in count[] as 0
  • Traverse the tree using preorder traversal and fill the entries in count[] so that 
    • The count[] array contains the count of nodes at each level of the Binary Tree.
  • The level with the maximum number of nodes has the maximum width.
  • Return the value of that level. 

Below is the implementation of the above approach.

C++




// C++ program to calculate width of binary tree
#include <bits/stdc++.h>
using namespace std;
  
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class node {
public:
    int data;
    node* left;
    node* right;
    node(int d)
    {
        this->data = d;
        this->left = this->right = NULL;
    }
};
  
// A utility function to get
// height of a binary tree
int height(node* node);
  
// A utility function that returns
// maximum value in arr[] of size n
int getMax(int arr[], int n);
  
// A function that fills count array
// with count of nodes at every
// level of given binary tree
void getMaxWidthRecur(node* root, int count[], int level);
  
/* Function to get the maximum
width of a binary tree*/
int getMaxWidth(node* root)
{
    int width;
    int h = height(root);
  
    // Create an array that will
    // store count of nodes at each level
    int* count = new int[h];
  
    int level = 0;
  
    // Fill the count array using preorder traversal
    getMaxWidthRecur(root, count, level);
  
    // Return the maximum value from count array
    return getMax(count, h);
}
  
// A function that fills count array
// with count of nodes at every
// level of given binary tree
void getMaxWidthRecur(node* root, 
                      int count[], int level)
{
    if (root) {
        count[level]++;
        getMaxWidthRecur(root->left, count, level + 1);
        getMaxWidthRecur(root->right, count, level + 1);
    }
}
  
/* UTILITY FUNCTIONS */
/* Compute the "height" of a tree -- the number of
    nodes along the longest path from the root node
    down to the farthest leaf node.*/
int height(node* node)
{
    if (node == NULL)
        return 0;
    else {
        /* compute the height of each subtree */
        int lHeight = height(node->left);
        int rHeight = height(node->right);
        /* use the larger one */
  
        return (lHeight > rHeight) ? (lHeight + 1)
                                   : (rHeight + 1);
    }
}
  
// Return the maximum value from count array
int getMax(int arr[], int n)
{
    int max = arr[0];
    int i;
    for (i = 0; i < n; i++) {
        if (arr[i] > max)
            max = arr[i];
    }
    return max;
}
  
/* Driver code*/
int main()
{
    node* root = new node(1);
    root->left = new node(2);
    root->right = new node(3);
    root->left->left = new node(4);
    root->left->right = new node(5);
    root->right->right = new node(8);
    root->right->right->left = new node(6);
    root->right->right->right = new node(7);
  
    cout << "Maximum width is " << getMaxWidth(root)
         << endl;
    return 0;
}
  
// This is code is contributed by rathbhupendra

C




// C program to calculate width of binary tree
#include <stdio.h>
#include <stdlib.h>
  
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
struct node {
    int data;
    struct node* left;
    struct node* right;
};
  
// A utility function to get height of a binary tree
int height(struct node* node);
  
// A utility function to allocate a new node with given data
struct node* newNode(int data);
  
// A utility function that returns maximum value in arr[] of
// size n
int getMax(int arr[], int n);
  
// A function that fills count array with count of nodes at
// every level of given binary tree
void getMaxWidthRecur(struct node* root, int count[],
                      int level);
  
/* Function to get the maximum width of a binary tree*/
int getMaxWidth(struct node* root)
{
    int width;
    int h = height(root);
  
    // Create an array that will store count of nodes at
    // each level
    int* count = (int*)calloc(sizeof(int), h);
  
    int level = 0;
  
    // Fill the count array using preorder traversal
    getMaxWidthRecur(root, count, level);
  
    // Return the maximum value from count array
    return getMax(count, h);
}
  
// A function that fills count array with count of nodes at
// every level of given binary tree
void getMaxWidthRecur(struct node* root, int count[],
                      int level)
{
    if (root) {
        count[level]++;
        getMaxWidthRecur(root->left, count, level + 1);
        getMaxWidthRecur(root->right, count, level + 1);
    }
}
  
/* UTILITY FUNCTIONS */
/* Compute the "height" of a tree -- the number of
    nodes along the longest path from the root node
    down to the farthest leaf node.*/
int height(struct node* node)
{
    if (node == NULL)
        return 0;
    else {
        /* compute the height of each subtree */
        int lHeight = height(node->left);
        int rHeight = height(node->right);
        /* use the larger one */
  
        return (lHeight > rHeight) ? (lHeight + 1)
                                   : (rHeight + 1);
    }
}
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
struct node* newNode(int data)
{
    struct node* node
        = (struct node*)malloc(sizeof(struct node));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
    return (node);
}
  
// Return the maximum value from count array
int getMax(int arr[], int n)
{
    int max = arr[0];
    int i;
    for (i = 0; i < n; i++) {
        if (arr[i] > max)
            max = arr[i];
    }
    return max;
}
  
/* Driver program to test above functions*/
int main()
{
    struct node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->right = newNode(8);
    root->right->right->left = newNode(6);
    root->right->right->right = newNode(7);
  
    /*
     Constructed binary tree is:
            1
          /  \
         2    3
       /  \     \
      4   5     8
                /  \
               6   7
    */
    printf("Maximum width is %d \n", getMaxWidth(root));
    getchar();
    return 0;
}

Java




// Java program to calculate width of binary tree
  
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
class Node {
    int data;
    Node left, right;
  
    Node(int item)
    {
        data = item;
        left = right = null;
    }
}
  
class BinaryTree {
    Node root;
  
    /* Function to get the maximum width of a binary tree*/
    int getMaxWidth(Node node)
    {
        int width;
        int h = height(node);
  
        // Create an array that will store count of nodes at
        // each level
        int count[] = new int[10];
  
        int level = 0;
  
        // Fill the count array using preorder traversal
        getMaxWidthRecur(node, count, level);
  
        // Return the maximum value from count array
        return getMax(count, h);
    }
  
    // A function that fills count array with count of nodes
    // at every level of given binary tree
    void getMaxWidthRecur(Node node, int count[], int level)
    {
        if (node != null) {
            count[level]++;
            getMaxWidthRecur(node.left, count, level + 1);
            getMaxWidthRecur(node.right, count, level + 1);
        }
    }
  
    /* UTILITY FUNCTIONS */
  
    /* Compute the "height" of a tree -- the number of
     nodes along the longest path from the root node
     down to the farthest leaf node.*/
    int height(Node node)
    {
        if (node == null)
            return 0;
        else {
            /* compute the height of each subtree */
            int lHeight = height(node.left);
            int rHeight = height(node.right);
  
            /* use the larger one */
            return (lHeight > rHeight) ? (lHeight + 1)
                                       : (rHeight + 1);
        }
    }
  
    // Return the maximum value from count array
    int getMax(int arr[], int n)
    {
        int max = arr[0];
        int i;
        for (i = 0; i < n; i++) {
            if (arr[i] > max)
                max = arr[i];
        }
        return max;
    }
  
    /* Driver program to test above functions */
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
  
        /*
        Constructed binary tree is:
              1
            /  \
           2    3
          / \    \
         4   5    8
                 / \
                6   7 */
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
        tree.root.right.right = new Node(8);
        tree.root.right.right.left = new Node(6);
        tree.root.right.right.right = new Node(7);
  
        System.out.println("Maximum width is "
                           + tree.getMaxWidth(tree.root));
    }
}
  
// This code has been contributed by Mayank Jaiswal

Python3




# Python program to find the maximum width of 
# binary tree using Preorder Traversal.
  
# A binary tree node
  
  
class Node:
  
    # Constructor to create a new node
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
  
# Function to get the maximum width of a binary tree
  
  
def getMaxWidth(root):
    h = height(root)
    # Create an array that will store count of nodes at each level
    count = [0] * h
  
    level = 0
    # Fill the count array using preorder traversal
    getMaxWidthRecur(root, count, level)
  
    # Return the maximum value from count array
    return getMax(count, h)
  
# A function that fills count array with count of nodes at every
# level of given binary tree
  
  
def getMaxWidthRecur(root, count, level):
    if root is not None:
        count[level] += 1
        getMaxWidthRecur(root.left, count, level+1)
        getMaxWidthRecur(root.right, count, level+1)
  
# UTILITY FUNCTIONS
# Compute the "height" of a tree -- the number of
# nodes along the longest path from the root node
# down to the farthest leaf node.
  
  
def height(node):
    if node is None:
        return 0
    else:
        # compute the height of each subtree
        lHeight = height(node.left)
        rHeight = height(node.right)
        # use the larger one
        return (lHeight+1) if (lHeight > rHeight) else (rHeight+1)
  
# Return the maximum value from count array
  
  
def getMax(count, n):
    max = count[0]
    for i in range(1, n):
        if (count[i] > max):
            max = count[i]
    return max
  
  
# Driver program to test above function
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)
root.right.right = Node(8)
root.right.right.left = Node(6)
root.right.right.right = Node(7)
  
"""
Constructed binary tree is:
       1
      / \
     2   3
    / \   \
   4   5   8 
          / \
         6   7
"""
  
print ("Maximum width is %d" % (getMaxWidth(root)))
  
# This code is contributed by Naveen Aili

C#




// C# program to calculate width of binary tree
using System;
  
/* A binary tree node has data,
pointer to left child and
a pointer to right child */
public class Node 
{
    public int data;
    public Node left, right;
  
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
  
public class BinaryTree 
{
    Node root;
  
    /* Function to get the maximum
    width of a binary tree*/
    int getMaxWidth(Node node)
    {
        int width;
        int h = height(node);
  
        // Create an array that will store
        // count of nodes at each level
        int[] count = new int[10];
  
        int level = 0;
  
        // Fill the count array using preorder traversal
        getMaxWidthRecur(node, count, level);
  
        // Return the maximum value from count array
        return getMax(count, h);
    }
  
    // A function that fills count
    // array with count of nodes at every
    // level of given binary tree
    void getMaxWidthRecur(Node node, int[] count, int level)
    {
        if (node != null
        {
            count[level]++;
            getMaxWidthRecur(node.left, count, level + 1);
            getMaxWidthRecur(node.right, count, level + 1);
        }
    }
  
    /* UTILITY FUNCTIONS */
  
    /* Compute the "height" of a tree -- the number of
    nodes along the longest path from the root node
    down to the farthest leaf node.*/
    int height(Node node)
    {
        if (node == null)
            return 0;
        else 
        {
            /* compute the height of each subtree */
            int lHeight = height(node.left);
            int rHeight = height(node.right);
  
            /* use the larger one */
            return (lHeight > rHeight) ? (lHeight + 1)
                                       : (rHeight + 1);
        }
    }
  
    // Return the maximum value from count array
    int getMax(int[] arr, int n)
    {
        int max = arr[0];
        int i;
        for (i = 0; i < n; i++) 
        {
            if (arr[i] > max)
                max = arr[i];
        }
        return max;
    }
  
    /* Driver program to test above functions */
    public static void Main(String[] args)
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
        tree.root.right.right = new Node(8);
        tree.root.right.right.left = new Node(6);
        tree.root.right.right.right = new Node(7);
  
        Console.WriteLine("Maximum width is "
                          + tree.getMaxWidth(tree.root));
    }
}
  
// This code is contributed Rajput-Ji

Javascript




<script>
// javascript program to calculate width of binary tree
  
/* A binary tree node has data, pointer to left child
   and a pointer to right child */
class Node {
    constructor(val) {
        this.data = val;
        this.left = null;
        this.right = null;
    }
}
var root;
  
    /* Function to get the maximum width of a binary tree*/
    function getMaxWidth(node)
    {
        var width;
        var h = height(node);
  
        // Create an array that will store count of nodes at
        // each level
        var count = Array(10).fill(0);
  
        var level = 0;
  
        // Fill the count array using preorder traversal
        getMaxWidthRecur(node, count, level);
  
        // Return the maximum value from count array
        return getMax(count, h);
    }
  
    // A function that fills count array with count of nodes
    // at every level of given binary tree
    function getMaxWidthRecur(node , count , level)
    {
        if (node != null) {
            count[level]++;
            getMaxWidthRecur(node.left, count, level + 1);
            getMaxWidthRecur(node.right, count, level + 1);
        }
    }
  
    /* UTILITY FUNCTIONS */
  
    /* Compute the "height" of a tree -- the number of
     nodes avar the longest path from the root node
     down to the farthest leaf node.*/
    function height(node)
    {
        if (node == null)
            return 0;
        else {
            /* compute the height of each subtree */
            var lHeight = height(node.left);
            var rHeight = height(node.right);
  
            /* use the larger one */
            return (lHeight > rHeight) ? (lHeight + 1)
                                       : (rHeight + 1);
        }
    }
  
    // Return the maximum value from count array
    function getMax(arr , n)
    {
        var max = arr[0];
        var i;
        for (i = 0; i < n; i++) {
            if (arr[i] > max)
                max = arr[i];
        }
        return max;
    }
  
    /* Driver program to test above functions */
      
  
        /*
        Constructed binary tree is:
              1
            /  \
           2    3
          / \    \
         4   5    8
                 / \
                6   7 */
        root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
        root.left.left = new Node(4);
        root.left.right = new Node(5);
        root.right.right = new Node(8);
        root.right.right.left = new Node(6);
        root.right.right.right = new Node(7);
  
        document.write("Maximum width is "
                           + getMaxWidth(root));
  
// This code is contributed by Rajput-Ji
</script>

Output

Maximum width is 3

Time Complexity: O(N)
Auxiliary Space: O(h) where h is the height of the tree.

Thanks to Raja and jagdish for suggesting this method.
Please write comments if you find the above code/algorithm incorrect, or find better ways to solve the same problem.


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!