Given a binary tree, find the vertical width of the binary tree. The width of a binary tree is the number of vertical paths.
In this image, the tree contains 6 vertical lines which are the required width of the tree.
Examples :
Input : 7 / \ 6 5 / \ / \ 4 3 2 1 Output : 5 Input : 1 / \ 2 3 / \ / \ 4 5 6 7 \ \ 8 9 Output : 6
Approach : Take inorder traversal and then take a temporary variable if we go left then temp value decreases and if go to right then temp value increases. Assert a condition in this, if the minimum is greater than temp, then minimum = temp and if maximum less then temp then maximum = temp. In the end, print minimum + maximum which is the vertical width of the tree.
C++
// CPP program to print vertical width // of a tree #include <bits/stdc++.h> using namespace std; // A Binary Tree Node struct Node { int data; struct Node *left, *right; }; // get vertical width void lengthUtil(Node* root, int &maximum, int &minimum, int curr=0) { if (root == NULL) return ; // traverse left lengthUtil(root->left, maximum, minimum, curr - 1); // if curr is decrease then get // value in minimum if (minimum > curr) minimum = curr; // if curr is increase then get // value in maximum if (maximum < curr) maximum = curr; // traverse right lengthUtil(root->right, maximum, minimum, curr + 1); } int getLength(Node* root) { int maximum = 0, minimum = 0; lengthUtil(root, maximum, minimum, 0); // 1 is added to include root in the width return ( abs (minimum) + maximum) + 1; } // Utility function to create a new tree node Node* newNode( int data) { Node* curr = new Node; curr->data = data; curr->left = curr->right = NULL; return curr; } // Driver program to test above functions int main() { Node* root = newNode(7); root->left = newNode(6); root->right = newNode(5); root->left->left = newNode(4); root->left->right = newNode(3); root->right->left = newNode(2); root->right->right = newNode(1); cout << getLength(root) << "\n" ; return 0; } |
Java
// Java program to print vertical width // of a tree import java.util.*; class GFG { // A Binary Tree Node static class Node { int data; Node left, right; }; static int maximum = 0 , minimum = 0 ; // get vertical width static void lengthUtil(Node root, int curr) { if (root == null ) return ; // traverse left lengthUtil(root.left, curr - 1 ); // if curr is decrease then get // value in minimum if (minimum > curr) minimum = curr; // if curr is increase then get // value in maximum if (maximum < curr) maximum = curr; // traverse right lengthUtil(root.right, curr + 1 ); } static int getLength(Node root) { maximum = 0 ; minimum = 0 ; lengthUtil(root, 0 ); // 1 is added to include root in the width return (Math.abs(minimum) + maximum) + 1 ; } // Utility function to create a new tree node static Node newNode( int data) { Node curr = new Node(); curr.data = data; curr.left = curr.right = null ; return curr; } // Driver Code public static void main(String[] args) { Node root = newNode( 7 ); root.left = newNode( 6 ); root.right = newNode( 5 ); root.left.left = newNode( 4 ); root.left.right = newNode( 3 ); root.right.left = newNode( 2 ); root.right.right = newNode( 1 ); System.out.println(getLength(root)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 program to prvertical width # of a tree # class to create a new tree node class newNode: def __init__( self , data): self .data = data self .left = self .right = None # get vertical width def lengthUtil(root, maximum, minimum, curr = 0 ): if (root = = None ): return # traverse left lengthUtil(root.left, maximum, minimum, curr - 1 ) # if curr is decrease then get # value in minimum if (minimum[ 0 ] > curr): minimum[ 0 ] = curr # if curr is increase then get # value in maximum if (maximum[ 0 ] < curr): maximum[ 0 ] = curr # traverse right lengthUtil(root.right, maximum, minimum, curr + 1 ) def getLength(root): maximum = [ 0 ] minimum = [ 0 ] lengthUtil(root, maximum, minimum, 0 ) # 1 is added to include root in the width return ( abs (minimum[ 0 ]) + maximum[ 0 ]) + 1 # Driver Code if __name__ = = '__main__' : root = newNode( 7 ) root.left = newNode( 6 ) root.right = newNode( 5 ) root.left.left = newNode( 4 ) root.left.right = newNode( 3 ) root.right.left = newNode( 2 ) root.right.right = newNode( 1 ) print (getLength(root)) # This code is contributed by PranchalK |
C#
// C# program to print vertical width // of a tree using System; class GFG { // A Binary Tree Node public class Node { public int data; public Node left, right; }; static int maximum = 0, minimum = 0; // get vertical width static void lengthUtil(Node root, int curr) { if (root == null ) return ; // traverse left lengthUtil(root.left, curr - 1); // if curr is decrease then get // value in minimum if (minimum > curr) minimum = curr; // if curr is increase then get // value in maximum if (maximum < curr) maximum = curr; // traverse right lengthUtil(root.right, curr + 1); } static int getLength(Node root) { maximum = 0; minimum = 0; lengthUtil(root, 0); // 1 is added to include root in the width return (Math.Abs(minimum) + maximum) + 1; } // Utility function to create a new tree node static Node newNode( int data) { Node curr = new Node(); curr.data = data; curr.left = curr.right = null ; return curr; } // Driver Code public static void Main(String[] args) { Node root = newNode(7); root.left = newNode(6); root.right = newNode(5); root.left.left = newNode(4); root.left.right = newNode(3); root.right.left = newNode(2); root.right.right = newNode(1); Console.WriteLine(getLength(root)); } } // This code is contributed by PrinciRaj1992 |
5
Time Complexity: O(n)
Auxiliary Space: O(h) where h is the height of the binary tree. This much space is needed for recursive calls.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.