Skip to content
Related Articles

Related Articles

Maximum Sum of Products of Two Arrays
  • Difficulty Level : Easy
  • Last Updated : 01 Mar, 2021

Given two arrays A and B of positive integers of the same size N. The task is to find the maximum sum of products of their elements. Each element in A has to be multiplied with exactly one element in B or vice versa such that each element of both the arrays appears exactly once and the sum of the product obtained is maximum. 
Examples
 

Input : A[] = {1, 2, 3} 
B[] = {4, 5, 1} 
Output : 24 
Explanation : Maximum sum of product is obtained by 5*3+4*2+1*1 = 24.
Input : A[] = {5, 1, 3, 4, 2} 
B[] = {8, 10, 9, 7, 6} 
Output : 130 
Explanation : Maximum sum of product is obtained by 10*5+9*4+8*3+7*2+6*1 = 130. 
 

 

The idea is to observe that product of two maximum number will contribute toward the maximum sum of the product. So the idea is to: 
 

  1. Sort both the arrays.
  2. Traverse the arrays, and calculate the sum of products of array elements that are at the same index.

Below is the implementation of the above approach: 
 



C++




// CPP program to calculate maximum sum
// of products of two arrays
#include<bits/stdc++.h>
using namespace std;
 
    // Function that calculates maximum sum
    // of products of two arrays
    int maximumSOP(int *a, int *b)
    {
        // Variable to store the sum of
        // products of array elements
        int sop = 0;
 
        // length of the arrays
        int n = sizeof(a)/sizeof(a[0]);
 
        // Sorting both the arrays
        sort(a,a+n+1);
        sort(b,b+n+1);
 
        // Traversing both the arrays
        // and calculating sum of product
        for (int i = 0; i <=n; i++) {
            sop += a[i] * b[i];
        }
 
        return sop;
    }
 
    // Driver code
    int main()
    {
        int A[] = { 1, 2, 3 };
        int B[] = { 4, 5, 1 };
 
        cout<<maximumSOP(A, B);
        return 0;
    }
 
// This code is contributed by mits

Java




// Java program to calculate maximum sum
// of products of two arrays
 
import java.io.*;
import java.util.*;
public class GFG {
 
    // Function that calculates maximum sum
    // of products of two arrays
    static int maximumSOP(int[] a, int[] b)
    {
        // Variable to store the sum of
        // products of array elements
        int sop = 0;
 
        // length of the arrays
        int n = a.length;
 
        // Sorting both the arrays
        Arrays.sort(a);
        Arrays.sort(b);
 
        // Traversing both the arrays
        // and calculating sum of product
        for (int i = 0; i < n; i++) {
            sop += a[i] * b[i];
        }
 
        return sop;
    }
 
    // Driver code
    public static void main(String args[])
    {
        int[] A = { 1, 2, 3 };
        int[] B = { 4, 5, 1 };
 
        System.out.println(maximumSOP(A, B));
    }
}

Python 3




# Python program to calculate
# maximum sum of products of
# two arrays
 
# Function that calculates
# maximum sum of products
# of two arrays
def maximumSOP(a, b) :
 
    # Variable to store the sum of
    # products of array elements
    sop = 0
 
    # length of the arrays
    n = len(a)
 
    # Sorting both the arrays
    a.sort()
    b.sort()
 
    # Traversing both the arrays
    # and calculating sum of product
    for i in range(n) :
        sop += a[i] * b[i]
 
    return sop
 
# Driver code    
if __name__ == "__main__" :
 
    A = [1, 2, 3]
    B = [4, 5, 1]
 
    print(maximumSOP(A, B))
 
# This code is contributed by ANKITRAI1

C# 


// C# program to calculate maximum sum
// of products of two arrays
using System;

class GFG 
{

// Function that calculates maximum 
// sum of products of two arrays
static int maximumSOP(int[] a, int[] b)
{
    // Variable to store the sum of
    // products of array elements
    int sop = 0;

    // length of the arrays
    int n = a.Length;

    // Sorting both the arrays
    Array.Sort(a);
    Array.Sort(b);

    // Traversing both the arrays
    // and calculating sum of product
    for (int i = 0; i < n; i++) 
    {
        sop += a[i] * b[i];
    }

    return sop;
}

// Driver code
public static void Main()
{
    int[] A = { 1, 2, 3 };
    int[] B = { 4, 5, 1 };

    Console.Write(maximumSOP(A, B));
}
}

// This code is contributed 
// by ChitraNayal


PHP




<?php
// PHP program to calculate maximum 
// sum of products of two arrays
 
// Function that calculates maximum
// sum of products of two arrays
function maximumSOP(&$a, &$b)
{
    $sop = 0;
     
    // Sorting both the arrays
    sort($a);
    sort($b);
 
    // length of the arrays
    $n = sizeof($a);
     
    // Traversing both the arrays
    // and calculating sum of product
    for ($i = 0; $i < $n; $i++)
    {
        $sop = $sop + ($a[$i] * $b[$i]);
    }
 
    return $sop;
}
 
// Driver code
$A = array(1, 2, 3 );
$B = array(4, 5, 1 );
echo maximumSOP($A, $B);
 
// This code is contributed
// by Shivi_Aggarwal
?>

Javascript




<script>
 
// Javascript program to calculate maximum sum
// of products of two arrays 
 
    // Function that calculates maximum sum
    // of products of two arrays
    function maximumSOP(a, b)
    {
        // Variable to store the sum of
        // products of array elements
        let sop = 0;
 
        // length of the arrays
        let n = a.length;
 
        // Sorting both the arrays
        a.sort();
        b.sort();
 
        // Traversing both the arrays
        // and calculating sum of product
        for (let i = 0; i <n; i++) {
            sop += (a[i] * b[i]);
        }
 
        return sop;
    }
 
    // Driver code
        let A = [ 1, 2, 3 ];
        let B = [ 4, 5, 1 ];
 
        document.write(maximumSOP(A, B));
 
// This code is contributed by Mayank Tyagi
 
</script>
Output: 
24

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :