Maximize the sum of products of the degrees between any two vertices of the tree

Given an integer N, the task is to construct a tree such that sum of degree(u) * degree(v) for all ordered pairs (u, v) is maximum where u != v. Print the maximum possible sum.

Examples:

Input: N = 4
Output: 26
      1
     /
    2
   /
  3
 /
4
For node 1, 1*2 + 1*2 + 1*1 = 5
For node 2, 2*1 + 2*2 + 2*1 = 8
For node 3, 2*1 + 2*2 + 2*1 = 8
For node 4, 1*1 + 1*2 + 1*2 = 5
Total sum = 5 + 8 + 8 + 5 = 26

Input: N = 6
Output: 82

Approach: We know that sum of the degree of all nodes in a tree is (2 * N) – 2 where N is the number of nodes in the tree. As we have to maximize the sum so we have to minimize the number of leaf nodes as the leaf nodes have the minimum degree among all the nodes of the tree and the tree will be of the form:

      1
     /
    2
   /
  ...
 /
N

where only the root and the only leaf node will have a degree of 1 and all the other nodes will have degree 2.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
#define ll long long int
  
// Function to return the maximum possible sum
ll maxSum(int N)
{
    ll ans = 0;
  
    for (int u = 1; u <= N; u++) {
        for (int v = 1; v <= N; v++) {
            if (u == v)
                continue;
  
            // Initialize degree for node u to 2
            int degreeU = 2;
  
            // If u is the leaf node or the root node
            if (u == 1 || u == N)
                degreeU = 1;
  
            // Initialize degree for node v to 2
            int degreeV = 2;
  
            // If v is the leaf node or the root node
            if (v == 1 || v == N)
                degreeV = 1;
  
            // Update the sum
            ans += (degreeU * degreeV);
        }
    }
  
    return ans;
}
  
// Driver code
int main()
{
    int N = 6;
    cout << maxSum(N);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
class GFG
{
      
// Function to return the maximum possible sum
static int maxSum(int N)
{
    int ans = 0;
  
    for (int u = 1; u <= N; u++) 
    {
        for (int v = 1; v <= N; v++)
        {
            if (u == v)
                continue;
  
            // Initialize degree for node u to 2
            int degreeU = 2;
  
            // If u is the leaf node or the root node
            if (u == 1 || u == N)
                degreeU = 1;
  
            // Initialize degree for node v to 2
            int degreeV = 2;
  
            // If v is the leaf node or the root node
            if (v == 1 || v == N)
                degreeV = 1;
  
            // Update the sum
            ans += (degreeU * degreeV);
        }
    }
  
    return ans;
}
  
// Driver code
public static void main(String[] args)
{
    int N = 6;
    System.out.println(maxSum(N));
}
}
  
// This code is contributed by Code_Mech

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach 
  
# Function to return the maximum possible sum 
def maxSum(N) : 
    ans = 0
  
    for u in range(1, N + 1) :
        for v in range(1, N + 1) : 
            if (u == v) :
                continue
  
            # Initialize degree for node u to 2 
            degreeU = 2
  
            # If u is the leaf node or the root node 
            if (u == 1 or u == N) :
                degreeU = 1
  
            # Initialize degree for node v to 2 
            degreeV = 2
  
            # If v is the leaf node or the root node 
            if (v == 1 or v == N) :
                degreeV = 1
  
            # Update the sum 
            ans += (degreeU * degreeV); 
              
    return ans; 
  
# Driver code 
if __name__ == "__main__" :
      
    N = 6
    print(maxSum(N)); 
  
# This code is contributed by Ryuga

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach
using System;
class GFG
{
      
// Function to return the maximum possible sum
static int maxSum(int N)
{
    int ans = 0;
  
    for (int u = 1; u <= N; u++) 
    {
        for (int v = 1; v <= N; v++)
        {
            if (u == v)
                continue;
  
            // Initialize degree for node u to 2
            int degreeU = 2;
  
            // If u is the leaf node or the root node
            if (u == 1 || u == N)
                degreeU = 1;
  
            // Initialize degree for node v to 2
            int degreeV = 2;
  
            // If v is the leaf node or the root node
            if (v == 1 || v == N)
                degreeV = 1;
  
            // Update the sum
            ans += (degreeU * degreeV);
        }
    }
  
    return ans;
}
  
// Driver code
static void Main()
{
    int N = 6;
    Console.WriteLine(maxSum(N));
}
}
  
// This code is contributed by Chandan_jnu

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of above approach
  
// Function to return the maximum 
// possible sum
function maxSum($N)
{
    $ans = 0;
  
    for ($u = 1; $u <= $N; $u++)
    {
        for ($v = 1; $v <= $N; $v++)
        {
            if ($u == $v)
                continue;
  
            // Initialize degree for node u to 2
            $degreeU = 2;
  
            // If u is the leaf node or the 
            // root node
            if ($u == 1 || $u == $N)
                $degreeU = 1;
  
            // Initialize degree for node v to 2
            $degreeV = 2;
  
            // If v is the leaf node or the 
            // root node
            if ($v == 1 || $v == $N)
                $degreeV = 1;
  
            // Update the sum
            $ans += ($degreeU * $degreeV);
        }
    }
  
    return $ans;
}
  
// Driver code
$N = 6;
echo maxSum($N);
  
// This code is contributed 
// by Akanksha Rai
?>

chevron_right


Output:

82


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.