Open In App

Maximize sum of products at corresponding indices in two arrays by reversing at most one subarray in first Array

Last Updated : 17 Jan, 2022
Improve
Improve
Like Article
Like
Save
Share
Report

Given two arrays A and B of size N, the task is to maximize the sum of A[i]*B[i] across all values of i from 0 to N-1 by reversing at most one subarray of array A.

Examples:

Input: N = 4, A = [5, 1, 2, 3], B = [1, 4, 3, 2]
Output: 33
Explanation: Array A after reversing the subarray A[0, 1] will become [1, 5, 2, 3]. Sum of A[i]*B[i] after the reversal becomes 1*1+5*4+2*3+3*2 = 33.

Input: N = 3, A = [6, 7, 3], B = [5, 1, 7]
Output: 82

Naive Approach: One simple way to solve this problem is to check for all possible subarrays of A and reverse them one by one to find the maximum possible value of the sum.

Below is the implementation of the above approach:

C++




// C++ program of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum sum of A[i]*B[i]
// across all values of i from 0 to N-1 by reversing
// at most one subarray of array A
int maxSum(vector<int>& A, vector<int>& B)
{
    int N = A.size();
 
    // Initialising maximum possible sum variable
    int maxPosSum = 0;
 
    // Iterating for all subarrays
    for (int L = 0; L < N - 1; L++) {
        for (int R = L; R < N; R++) {
 
            // Variable for storing the sum after reversing
            // The subarray from L to R
            int curSum = 0;
            for (int i = 0; i < N; i++) {
 
                // Checking if the current index is in the
                // reversed subarray
                if (i >= L && i <= R)
                    curSum += A[L + R - i] * B[i];
                else
                    curSum += A[i] * B[i];
            }
 
            // Updating the answer
            maxPosSum = max(maxPosSum, curSum);
        }
    }
 
    // Returning the Maximum Possible Sum of product
    return maxPosSum;
}
 
// Driver Code
int main()
{
    // Given Input
    int N = 4;
    vector<int> A = { 5, 1, 2, 3 }, B = { 1, 4, 3, 2 };
 
    cout << maxSum(A, B);
}


Java




// Java code to implement above approach
import java.util.*;
public class GFG {
 
  // Function to find the maximum sum of A[i]*B[i]
  // across all values of i from 0 to N-1 by reversing
  // at most one subarray of array A
  static int maxSum(int []A, int []B)
  {
    int N = A.length;
 
    // Initialising maximum possible sum variable
    int maxPosSum = 0;
 
    // Iterating for all subarrays
    for (int L = 0; L < N - 1; L++) {
      for (int R = L; R < N; R++) {
 
        // Variable for storing the sum after reversing
        // The subarray from L to R
        int curSum = 0;
        for (int i = 0; i < N; i++) {
 
          // Checking if the current index is in the
          // reversed subarray
          if (i >= L && i <= R)
            curSum += A[L + R - i] * B[i];
          else
            curSum += A[i] * B[i];
        }
 
        // Updating the answer
        maxPosSum = Math.max(maxPosSum, curSum);
      }
    }
 
    // Returning the Maximum Possible Sum of product
    return maxPosSum;
  }
 
  // Driver code
  public static void main(String args[])
  {
     
    // Given Input
    int N = 4;
    int []A = { 5, 1, 2, 3 };
    int []B = { 1, 4, 3, 2 };
    System.out.println(maxSum(A, B));
 
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Python3




# Python code for the above approach
 
# Function to find the maximum sum of A[i]*B[i]
# across all values of i from 0 to N-1 by reversing
# at most one subarray of array A
def maxSum(A, B):
    N = len(A)
 
    # Initialising maximum possible sum variable
    maxPosSum = 0
 
    # Iterating for all subarrays
    for L in range(N - 1):
        for R in range(L, N):
 
            # Variable for storing the sum after reversing
            # The subarray from L to R
            curSum = 0
            for i in range(N):
                # Checking if the current index is in the
                # reversed subarray
                if (i >= L and i <= R):
                    curSum += A[L + R - i] * B[i]
                else:
                    curSum += A[i] * B[i]
 
            # Updating the answer
            maxPosSum = max(maxPosSum, curSum)
 
    # Returning the Maximum Possible Sum of product
    return maxPosSum
 
# Driver Code
 
# Given Input
N = 4
A = [5, 1, 2, 3]
B = [1, 4, 3, 2]
print(maxSum(A, B))
 
# This code is contributed by gfgking


C#




// C# code to implement above approach
using System;
public class GFG {
 
  // Function to find the maximum sum of A[i]*B[i]
  // across all values of i from 0 to N-1 by reversing
  // at most one subarray of array A
  static int maxSum(int []A, int []B)
  {
    int N = A.Length;
 
    // Initialising maximum possible sum variable
    int maxPosSum = 0;
 
    // Iterating for all subarrays
    for (int L = 0; L < N - 1; L++) {
      for (int R = L; R < N; R++) {
 
        // Variable for storing the sum after reversing
        // The subarray from L to R
        int curSum = 0;
        for (int i = 0; i < N; i++) {
 
          // Checking if the current index is in the
          // reversed subarray
          if (i >= L && i <= R)
            curSum += A[L + R - i] * B[i];
          else
            curSum += A[i] * B[i];
        }
 
        // Updating the answer
        maxPosSum = Math.Max(maxPosSum, curSum);
      }
    }
 
    // Returning the Maximum Possible Sum of product
    return maxPosSum;
  }
 
  // Driver code
  public static void Main()
  {
     
    // Given Input
    int []A = { 5, 1, 2, 3 };
    int []B = { 1, 4, 3, 2 };
    Console.Write(maxSum(A, B));
 
  }
}
 
// This code is contributed by Saurabh Jaiswal


Javascript




<script>
   // JavaScript code for the above approach
 
   // Function to find the maximum sum of A[i]*B[i]
   // across all values of i from 0 to N-1 by reversing
   // at most one subarray of array A
   function maxSum(A, B)
   {
     let N = A.length;
 
     // Initialising maximum possible sum variable
     let maxPosSum = 0;
 
     // Iterating for all subarrays
     for (let L = 0; L < N - 1; L++) {
       for (let R = L; R < N; R++) {
 
         // Variable for storing the sum after reversing
         // The subarray from L to R
         let curSum = 0;
         for (let i = 0; i < N; i++) {
 
           // Checking if the current index is in the
           // reversed subarray
           if (i >= L && i <= R)
             curSum += A[L + R - i] * B[i];
           else
             curSum += A[i] * B[i];
         }
 
         // Updating the answer
         maxPosSum = Math.max(maxPosSum, curSum);
       }
     }
 
     // Returning the Maximum Possible Sum of product
     return maxPosSum;
   }
 
   // Driver Code
 
   // Given Input
   let N = 4;
   let A = [5, 1, 2, 3], B = [1, 4, 3, 2];
 
   document.write(maxSum(A, B));
 
 // This code is contributed by Potta Lokesh
 </script>


 
 

Output

33

 

Time Complexity: O(N3)
Auxiliary Space: O(1)

 

Efficient Approach: The above problem can be solved with the use of dynamic programming. Follow the below steps to solve this problem:

 

  • Let dp[L][[R] represent the sum of the product of A[i] and B[i] after reversing subarray A[L, R].
  • Observe that if the subarray A[L, R] is reversed, the subarray A[L+1, R-1] is also reversed. Therefore, dp[L][R] can be calculated by the use of dp[L+1][R-1] and by using the formula:

 dp[L][R] = dp[L+1][R-1]+ (A[R] * B[L]) – (A[L] * B[L]) + (A[L] * B[R]) – (A[R] * B[R])

  • Because In the calculation of dp[L+1][R-1], A[L]*B[L] and A[R]*B[R] is added whereas for the calculation dp[L][R], A[R]*B[L] and A[L]*B[R ]is added.
  • Hence we need to subtract A[L]*B[L] and A[R]*B[R] and add A[R]*B[L] and A[L]*B[R] to dp[L+1][R-1] for calculation of dp[L][R].
  • Print the answer according to the above observation.

 

Below is the implementation of the dynamic programming approach.

 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum sum of A[i]*B[i]
// across all values of i from 0 to N-1 by reversing
// at most one subarray of array A
int maxSum(vector<int>& A, vector<int>& B)
{
 
    int N = A.size();
 
    // Initialising maximum possible sum variable
    int maxPosSum = 0;
    int dp[N][N];
 
    // Initialising the dp array
    memset(dp, 0, sizeof(dp));
 
    // Value of maxPosSum when no subarray is reversed
    for (int i = 0; i < N; i++)
        maxPosSum += A[i] * B[i];
 
    // Initialising dp for subarray of length 1
    for (int i = 0; i < N; i++)
        dp[i][i] = maxPosSum;
 
    // Initialising dp for subarray of length 2
    for (int i = 0; i < N - 1; i++) {
        int R = i + 1;
        int L = i;
        dp[L][R] = maxPosSum + (A[R] * B[L]) - (A[L] * B[L])
                   + (A[L] * B[R]) - (A[R] * B[R]);
    }
 
    // Calculating the complete dp array
    for (int R = 0; R < N; R++) {
        for (int L = 0; L < N; L++) {
 
            // If length of subarray is less 3, then
            // continuing
            if (R - L + 1 < 3)
                continue;
            dp[L][R] = dp[L + 1][R - 1] + (A[R] * B[L])
                       - (A[L] * B[L]) + (A[L] * B[R])
                       - (A[R] * B[R]);
        }
    }
 
    // Updating the maxPosSum variable
    for (int L = 0; L < N; L++) {
        for (int R = L; R < N; R++) {
            maxPosSum = max(maxPosSum, dp[L][R]);
        }
    }
 
    // Returning the maximum possible sum of product
    return maxPosSum;
}
 
// Driver Code
int main()
{
    // Given Input
    vector<int> A = { 5, 1, 2, 3 }, B = { 1, 4, 3, 2 };
 
    cout << maxSum(A, B);
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
 
class GFG{
 
// Function to find the maximum sum of A[i]*B[i]
// across all values of i from 0 to N-1 by reversing
// at most one subarray of array A
static int maxSum(int[] A, int[] B)
{
 
    int N = A.length;
 
    // Initialising maximum possible sum variable
    int maxPosSum = 0;
    int [][]dp = new int[N][N];
 
 
    // Value of maxPosSum when no subarray is reversed
    for (int i = 0; i < N; i++)
        maxPosSum += A[i] * B[i];
 
    // Initialising dp for subarray of length 1
    for (int i = 0; i < N; i++)
        dp[i][i] = maxPosSum;
 
    // Initialising dp for subarray of length 2
    for (int i = 0; i < N - 1; i++) {
        int R = i + 1;
        int L = i;
        dp[L][R] = maxPosSum + (A[R] * B[L]) - (A[L] * B[L])
                   + (A[L] * B[R]) - (A[R] * B[R]);
    }
 
    // Calculating the complete dp array
    for (int R = 0; R < N; R++) {
        for (int L = 0; L < N; L++) {
 
            // If length of subarray is less 3, then
            // continuing
            if (R - L + 1 < 3)
                continue;
            dp[L][R] = dp[L + 1][R - 1] + (A[R] * B[L])
                       - (A[L] * B[L]) + (A[L] * B[R])
                       - (A[R] * B[R]);
        }
    }
 
    // Updating the maxPosSum variable
    for (int L = 0; L < N; L++) {
        for (int R = L; R < N; R++) {
            maxPosSum = Math.max(maxPosSum, dp[L][R]);
        }
    }
 
    // Returning the maximum possible sum of product
    return maxPosSum;
}
 
// Driver Code
public static void main(String[] args)
{
    // Given Input
    int[] A = { 5, 1, 2, 3 }, B = { 1, 4, 3, 2 };
 
    System.out.print(maxSum(A, B));
}
}
 
// This code is contributed by 29AjayKumar


Python




# Python implementation of the above approach
 
# Function to find the maximum sum of A[i]*B[i]
# across all values of i from 0 to N-1 by reversing
# at most one subarray of array A
def maxSum(A, B):
 
    N = len(A)
 
    # Initialising maximum possible sum variable
    maxPosSum = 0
 
    # Initialising the dp array
    dp = ([[0 for i in range(N)]
           for i in range(N)])
 
    # Value of maxPosSum when no subarray is reversed
    for i in range(0, N):
        maxPosSum = maxPosSum + (A[i] * B[i])
 
    # Initialising dp for subarray of length 1
    for i in range(0, N):
        dp[i][i] = maxPosSum
 
    # Initialising dp for subarray of length 2
    for i in range(0, N - 1):
        R = i + 1
        L = i
        dp[L][R] = maxPosSum + (A[R] * B[L]) - \
            (A[L] * B[L]) + (A[L] * B[R]) - (A[R] * B[R])
 
    # Calculating the complete dp array
    for R in range(0, N):
        for L in range(0, N):
 
            # If length of subarray is less 3, then
            # continuing
            if (R - L + 1 < 3):
                continue
            dp[L][R] = dp[L + 1][R - 1] + \
                (A[R] * B[L]) - (A[L] * B[L]) + (A[L] * B[R]) - (A[R] * B[R])
 
    # Updating the maxPosSum variable
    for R in range(0, N):
        for L in range(0, N):
            maxPosSum = max(maxPosSum, dp[L][R])
 
    # Returning the maximum possible sum of product
    return maxPosSum
 
# Driver Code
# Given Input
A = [5, 1, 2, 3]
B = [1, 4, 3, 2]
 
print(maxSum(A, B))
 
# This code is contributed by Samim Hossain Mondal.


C#




// C# implementation of the above approach
using System;
class GFG {
 
    // Function to find the maximum sum of A[i]*B[i]
    // across all values of i from 0 to N-1 by reversing
    // at most one subarray of array A
    static int maxSum(int[] A, int[] B)
    {
 
        int N = A.Length;
 
        // Initialising maximum possible sum variable
        int maxPosSum = 0;
        int[, ] dp = new int[N, N];
 
        // Initialising the dp array
        // memset(dp, 0, sizeof(dp));
 
        // Value of maxPosSum when no subarray is reversed
        for (int i = 0; i < N; i++)
            maxPosSum += A[i] * B[i];
 
        // Initialising dp for subarray of length 1
        for (int i = 0; i < N; i++)
            dp[i, i] = maxPosSum;
 
        // Initialising dp for subarray of length 2
        for (int i = 0; i < N - 1; i++) {
            int R = i + 1;
            int L = i;
            dp[L, R] = maxPosSum + (A[R] * B[L])
                       - (A[L] * B[L]) + (A[L] * B[R])
                       - (A[R] * B[R]);
        }
 
        // Calculating the complete dp array
        for (int R = 0; R < N; R++) {
            for (int L = 0; L < N; L++) {
 
                // If length of subarray is less 3, then
                // continuing
                if (R - L + 1 < 3)
                    continue;
                dp[L, R] = dp[L + 1, R - 1] + (A[R] * B[L])
                           - (A[L] * B[L]) + (A[L] * B[R])
                           - (A[R] * B[R]);
            }
        }
 
        // Updating the maxPosSum variable
        for (int L = 0; L < N; L++) {
            for (int R = L; R < N; R++) {
                maxPosSum = Math.Max(maxPosSum, dp[L, R]);
            }
        }
 
        // Returning the maximum possible sum of product
        return maxPosSum;
    }
 
    // Driver Code
    public static void Main()
    {
        // Given Input
        int[] A = { 5, 1, 2, 3 }, B = { 1, 4, 3, 2 };
 
        Console.WriteLine(maxSum(A, B));
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
// javascript implementation of the above approach
 
// Function to find the maximum sum of A[i]*B[i]
// across all values of i from 0 to N-1 by reversing
// at most one subarray of array A
function maxSum(A, B)
{
 
    var N = A.length;
 
    // Initialising maximum possible sum variable
    var maxPosSum = 0;
    var dp = Array(N).fill(0).map(x => Array(N).fill(0));   
     
    // Value of maxPosSum when no subarray is reversed
    for (var i = 0; i < N; i++)
        maxPosSum += A[i] * B[i];
 
    // Initialising dp for subarray of length 1
    for (var i = 0; i < N; i++)
        dp[i][i] = maxPosSum;
 
    // Initialising dp for subarray of length 2
    for (var i = 0; i < N - 1; i++) {
        var R = i + 1;
        var L = i;
        dp[L][R] = maxPosSum + (A[R] * B[L]) - (A[L] * B[L])
                   + (A[L] * B[R]) - (A[R] * B[R]);
    }
 
    // Calculating the complete dp array
    for (var R = 0; R < N; R++) {
        for (var L = 0; L < N; L++) {
 
            // If length of subarray is less 3, then
            // continuing
            if (R - L + 1 < 3)
                continue;
            dp[L][R] = dp[L + 1][R - 1] + (A[R] * B[L])
                       - (A[L] * B[L]) + (A[L] * B[R])
                       - (A[R] * B[R]);
        }
    }
 
    // Updating the maxPosSum variable
    for (var L = 0; L < N; L++) {
        for (var R = L; R < N; R++) {
            maxPosSum = Math.max(maxPosSum, dp[L][R]);
        }
    }
 
    // Returning the maximum possible sum of product
    return maxPosSum;
}
 
// Driver Code
// Given Input
var A = [ 5, 1, 2, 3 ], B = [ 1, 4, 3, 2 ];
 
document.write(maxSum(A, B));
 
// This code is contributed by 29AjayKumar
</script>


 
 

Output

33

 

Time Complexity: O(N2)
Auxiliary Space: O(N2)

 



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads