Maximum OR sum of sub-arrays of two different arrays

Given two arrays of positive integers. Select two sub-arrays of equal size from each array and calculate maximum possible OR sum of the two sub-arrays.
Note: Let f(x, l, r) is the OR sum of all the elements in the range [l, r] in array x.
Examples :

Input : A[] = {1, 2, 4, 3, 2}
        B[] = {2, 3, 3, 12, 1}
Output : 22
Explanation: Here, one way to get maximum
sum is to select sub-array [l = 2, r = 4]
f(A, 2, 4) = 2|4|3 = 7
f(B, 2, 4) = 3|3|12 = 15
So, f(A, 2, 4) + f(B, 2, 4) = 7 + 15 = 22.
This sum can be achieved in many other ways.

Input : A[] = {1, 2, 2}
        B[] = {2, 1, 3}
Output : 6

Observe the operation of Bitwise OR operator. If we take two integers X and Y, then (X|Y >= X). It can be proved by taking some examples. Lets derive a formula using the above equation.
f(a, 1, i-1) | f(a, i, j) | f(a, j+1, n) >= f(a, i, j)
and also f(a, 1, i-1) | f(a, i, j) | f(a, j+1, n) = f(a, 1, n)
from the above two equations, f(a, 1, n) >= f(a, i, j).



So, we get maximum sum when we take the OR of the whole array -> f(a, 1, n) + f(b, 1, n)

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find maximum OR sum
#include <bits/stdc++.h>
using namespace std;
  
// function to find maximum OR sum
void MaximumSum(int a[], int b[], int n)
{
    int sum1 = 0, sum2 = 0;
      
    // OR sum of all the elements
    // in both arrays
    for (int i = 0; i < n; i++) {
        sum1 |= a[i];
        sum2 |= b[i];
    }
    cout << sum1 + sum2 << endl;
}
  
// Driver Code
int main()
{
    int A[] = { 1, 2, 4, 3, 2 };
    int B[] = { 2, 3, 3, 12, 1 };
    int n = sizeof(A) / sizeof(A[0]);
    MaximumSum(A, B, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find maximum OR sum
  
class GFG {
      
// function to find maximum OR sum
static void MaximumSum(int a[], int b[], int n) 
{
    int sum1 = 0, sum2 = 0;
  
    // OR sum of all the elements
    // in both arrays
    for (int i = 0; i < n; i++) {
    sum1 |= a[i];
    sum2 |= b[i];
    }
    System.out.println(sum1 + sum2);
}
  
// Driver code
public static void main(String arg[])
{
    int A[] = {1, 2, 4, 3, 2};
    int B[] = {2, 3, 3, 12, 1};
    int n = A.length;
    MaximumSum(A, B, n);
}
}
  
// This code is contributed by Anant Agarwal.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to 
# find maximum OR sum
  
# function to find 
# maximum OR sum
def MaximumSum(a, b, n):
  
    sum1 = 0
    sum2 = 0
      
    # OR sum of all the 
    # elements in both arrays
    for i in range(0, n):
        sum1 |= a[i]
        sum2 |= b[i]
      
    print(sum1 + sum2)
  
# Driver Code
A = [ 1, 2, 4, 3, 2 ]
B = [ 2, 3, 3, 12, 1 ]
n = len(A) 
  
MaximumSum(A, B, n)
  
# This code is contributed by Smitha Dinesh Semwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find maximum OR sum
using System;
  
class GFG {
      
    // function to find maximum OR sum
    static void MaximumSum(int []a, int []b, int n) 
    {
        int sum1 = 0, sum2 = 0;
      
        // OR sum of all the elements
        // in both arrays
        for (int i = 0; i < n; i++)
        {
            sum1 |= a[i];
            sum2 |= b[i];
        }
        Console.WriteLine(sum1 + sum2);
    }
      
    // Driver code
    public static void Main()
    {
        int []A = {1, 2, 4, 3, 2};
        int []B = {2, 3, 3, 12, 1};
        int n = A.Length;
        MaximumSum(A, B, n);
    }
}
  
// This code is contributed by Vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find maximum OR sum
  
// function to find maximum OR sum
function MaximumSum($a, $b, $n)
{
    $sum1 = 0;
    $sum2 = 0;
      
    // OR sum of all the elements
    // in both arrays
    for ($i = 0; $i < $n; $i++) 
    {
        $sum1 |= $a[$i];
        $sum2 |= $b[$i];
    }
    echo ($sum1 + $sum2)."\n";
}
  
// Driver Code
$A = array(1, 2, 4, 3, 2 );
$B = array(2, 3, 3, 12, 1 );
$n = sizeof($A) / sizeof($A[0]);
MaximumSum($A, $B, $n);
  
// This code is contributed by mits 
  
?>

chevron_right




Output :

 22


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Mithun Kumar



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.