Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Maximum perimeter of a square in a 2D grid

  • Difficulty Level : Medium
  • Last Updated : 11 Nov, 2021

Given a matrix of integers mat[][] of size N * M. The task is to find the maximum perimeter of a square in the matrix. The perimeter of a square is defined as the sum of all the values lying on the sides of the square.
Examples: 
 

Input: mat[][] = { 
{-3, -2, 7}, 
{-4, 6, 0}, 
{-4, 8, 2}} 
Output: 16 
The maximum perimeter square is 
{6, 0} 
{8, 2}
Input: mat[][] = { 
{1, 1, 0}, 
{1, 1, 1}, 
{0, 1, 1}} 
Output:
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



Naive approach: A simple solution is to generate all the square that can be possible inside the given matrix mat[][] and then find their perimeter and take the maximum out of them.
Efficient approach: 
 

  • To find the perimeter of the square, the length of the sides should be known.
  • Here the length is described as the sum of elements on that particular row and column.
  • Two matrices of size N * M will be created and that will store the prefix sum of the rows of the original matrix and the prefix sum of the columns so that the length of sides can be calculated in constant time.
  • There will be two nested loops one from 1 to N and the other from 1 to M to find the left corner of the square (Top-Left corner) and one loop will be min(N – i, M – j) that will tell us the size of the square and make sure that the index will not exceed the size of the matrix.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the prefix sum of the
// rows and the columns of the given matrix
void prefix_calculate(vector<vector<int> >& A,
                      vector<vector<int> >& row,
                      vector<vector<int> >& col)
{
 
    // Number of rows and cols
    int n = (int)A.size();
    int m = (int)A[0].size();
 
    // First column of the row prefix array
    for (int i = 0; i < n; ++i) {
        row[i][0] = A[i][0];
    }
 
    // Update the prefix sum for the rows
    for (int i = 0; i < n; ++i) {
        for (int j = 1; j < m; ++j) {
            row[i][j] = row[i][j - 1]
                        + A[i][j];
        }
    }
 
    // First row of the column prefix array
    for (int i = 0; i < m; ++i) {
        col[0][i] = A[0][i];
    }
 
    // Update the prefix sum for the columns
    for (int i = 0; i < m; ++i) {
        for (int j = 1; j < n; ++j) {
            col[j][i] = A[j][i]
                        + col[j - 1][i];
        }
    }
}
 
// Function to return the perimeter
// of the square having top-left corner
// at (i, j) and size k
int perimeter(int i, int j, int k,
              vector<vector<int> >& row,
              vector<vector<int> >& col,
              vector<vector<int> >& A)
{
 
    // i and j represent the top left
    // corner of the square and
    // k is the size
    int row_s, col_s;
 
    // Get the upper row sum
    if (j == 0)
        row_s = 0;
    else
        row_s = row[i][j - 1];
 
    // Get the left column sum
    if (i == 0)
        col_s = 0;
    else
        col_s = col[i - 1][j];
 
    int upper_row = row[i][j + k] - row_s;
    int left_col = col[i + k][j] - col_s;
 
    // At the distance of k in
    // both direction
    if (j == 0)
        row_s = 0;
    else
        row_s = row[i + k][j - 1];
 
    if (i == 0)
        col_s = 0;
    else
        col_s = col[i - 1][j + k];
 
    int lower_row = row[i + k][j + k] - row_s;
    int right_col = col[i + k][j + k] - col_s;
 
    // The perimeter will be
    // sum of all the values
    int sum = upper_row
              + lower_row
              + left_col
              + right_col;
 
    // Since all the corners are
    // included twice, they need to
    // be subtract from the sum
    sum -= (A[i][j]
            + A[i + k][j]
            + A[i][j + k]
            + A[i + k][j + k]);
 
    return sum;
}
 
// Function to return the maximum perimeter
// of a square in the given matrix
int maxPerimeter(vector<vector<int> >& A)
{
 
    // Number of rows and cols
    int n = (int)A.size();
    int m = (int)A[0].size();
 
    vector<vector<int> > row(n, vector<int>(m, 0));
    vector<vector<int> > col(n, vector<int>(m, 0));
 
    // Function call to calculate
    // the prefix sum of rows and cols
    prefix_calculate(A, row, col);
 
    // To store the maximum perimeter
    int maxPer = 0;
 
    // Nested loops to choose the top-left
    // corner of the square
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
 
            // Loop for the size of the square
            for (int k = 0; k < min(n - i, m - j); ++k) {
 
                // Get the perimeter of the current square
                int perimtr = perimeter(i, j, k, row, col, A);
 
                // Update the maximum perimeter so far
                maxPer = max(maxPer, perimtr);
            }
        }
    }
 
    return maxPer;
}
 
// Driver code
int main()
{
    vector<vector<int> > A = {
        { 1, 1, 0 },
        { 1, 1, 1 },
        { 0, 1, 1 }
    };
 
    cout << maxPerimeter(A);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to calculate the prefix sum of the
// rows and the columns of the given matrix
static void prefix_calculate(int [][] A,
                    int [][] row,
                    int [][] col)
{
 
    // Number of rows and cols
    int n = (int)A.length;
    int m = (int)A[0].length;
 
    // First column of the row prefix array
    for (int i = 0; i < n; ++i)
    {
        row[i][0] = A[i][0];
    }
 
    // Update the prefix sum for the rows
    for (int i = 0; i < n; ++i)
    {
        for (int j = 1; j < m; ++j)
        {
            row[i][j] = row[i][j - 1]
                        + A[i][j];
        }
    }
 
    // First row of the column prefix array
    for (int i = 0; i < m; ++i)
    {
        col[0][i] = A[0][i];
    }
 
    // Update the prefix sum for the columns
    for (int i = 0; i < m; ++i)
    {
        for (int j = 1; j < n; ++j)
        {
            col[j][i] = A[j][i]
                        + col[j - 1][i];
        }
    }
}
 
// Function to return the perimeter
// of the square having top-left corner
// at (i, j) and size k
static int perimeter(int i, int j, int k,
                int [][] row, int [][] col,
                int [][] A)
{
 
    // i and j represent the top left
    // corner of the square and
    // k is the size
    int row_s, col_s;
 
    // Get the upper row sum
    if (j == 0)
        row_s = 0;
    else
        row_s = row[i][j - 1];
 
    // Get the left column sum
    if (i == 0)
        col_s = 0;
    else
        col_s = col[i - 1][j];
 
    int upper_row = row[i][j + k] - row_s;
    int left_col = col[i + k][j] - col_s;
 
    // At the distance of k in
    // both direction
    if (j == 0)
        row_s = 0;
    else
        row_s = row[i + k][j - 1];
 
    if (i == 0)
        col_s = 0;
    else
        col_s = col[i - 1][j + k];
 
    int lower_row = row[i + k][j + k] - row_s;
    int right_col = col[i + k][j + k] - col_s;
 
    // The perimeter will be
    // sum of all the values
    int sum = upper_row + lower_row +
                left_col + right_col;
 
    // Since all the corners are
    // included twice, they need to
    // be subtract from the sum
    sum -= (A[i][j] + A[i + k][j] +
             A[i][j + k] + A[i + k][j + k]);
 
    return sum;
}
 
// Function to return the maximum perimeter
// of a square in the given matrix
static int maxPerimeter(int [][] A)
{
 
    // Number of rows and cols
    int n = (int)A.length;
    int m = (int)A[0].length;
 
    int [][] row = new int[n][m];
    int [][] col = new int[n][m];
 
    // Function call to calculate
    // the prefix sum of rows and cols
    prefix_calculate(A, row, col);
 
    // To store the maximum perimeter
    int maxPer = 0;
 
    // Nested loops to choose the top-left
    // corner of the square
    for (int i = 0; i < n; ++i)
    {
        for (int j = 0; j < m; ++j)
        {
 
            // Loop for the size of the square
            for (int k = 0; k < Math.min(n - i, m - j); ++k)
            {
 
                // Get the perimeter of the current square
                int perimtr = perimeter(i, j, k,
                                        row, col, A);
 
                // Update the maximum perimeter so far
                maxPer = Math.max(maxPer, perimtr);
            }
        }
    }
 
    return maxPer;
}
 
// Driver code
public static void main(String[] args)
{
    int [][] A = {
        { 1, 1, 0 },
        { 1, 1, 1 },
        { 0, 1, 1 }
    };
 
    System.out.print(maxPerimeter(A));
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 implementation of the approach
 
# Function to calculate the prefix sum of the
# rows and the columns of the given matrix
def prefix_calculate(A, row, col):
     
    # Number of rows and cols
    n = len(A)
    m = len(A[0])
 
    # First column of the row prefix array
    for i in range(n):
        row[i][0] = A[i][0]
 
    # Update the prefix sum for the rows
    for i in range(n):
        for j in range(1, m):
            row[i][j] = row[i][j - 1]+ A[i][j]
 
    # First row of the column prefix array
    for i in range(m):
        col[0][i] = A[0][i]
 
    # Update the prefix sum for the columns
    for i in range(m):
        for j in range(1, m):
            col[j][i] = A[j][i] + col[j - 1][i]
 
# Function to return the perimeter
# of the square having top-left corner
# at (i, j) and size k
def perimeter(i, j, k, row, col, A):
 
    # i and j represent the top left
    # corner of the square and
    # k is the size
    row_s, col_s = 0, 0
 
    # Get the upper row sum
    if (j == 0):
        row_s = 0
    else:
        row_s = row[i][j - 1]
 
    # Get the left column sum
    if (i == 0):
        col_s = 0
    else:
        col_s = col[i - 1][j]
 
    upper_row = row[i][j + k] - row_s
    left_col = col[i + k][j] - col_s
 
    # At the distance of k in
    # both direction
    if (j == 0):
        row_s = 0
    else:
        row_s = row[i + k][j - 1]
 
    if (i == 0):
        col_s = 0
    else:
        col_s = col[i - 1][j + k]
 
    lower_row = row[i + k][j + k] - row_s
    right_col = col[i + k][j + k] - col_s
 
    # The perimeter will be
    # sum of all the values
    sum = upper_row + lower_row + \
           left_col + right_col
 
    # Since all the corners are
    # included twice, they need to
    # be subtract from the sum
    sum -= (A[i][j] + A[i + k][j] + \
            A[i][j + k] + A[i + k][j + k])
 
    return sum
 
# Function to return the maximum perimeter
# of a square in the given matrix
def maxPerimeter(A):
 
    # Number of rows and cols
    n = len(A)
    m = len(A[0])
 
    row = [[0 for i in range(m)]
              for i in range(n)]
    col = [[0 for i in range(m)]
              for i in range(n)]
 
    # Function call to calculate
    # the prefix sum of rows and cols
    prefix_calculate(A, row, col)
 
    # To store the maximum perimeter
    maxPer = 0
 
    # Nested loops to choose the top-left
    # corner of the square
    for i in range(n):
        for j in range(m):
 
            # Loop for the size of the square
            for k in range(min(n - i, m - j)):
 
                # Get the perimeter of the current square
                perimtr = perimeter(i, j, k,
                                    row, col, A)
 
                # Update the maximum perimeter so far
                maxPer = max(maxPer, perimtr)
 
    return maxPer
 
# Driver code
A = [[ 1, 1, 0 ],
     [ 1, 1, 1 ],
     [ 0, 1, 1 ]]
 
print(maxPerimeter(A))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to calculate the prefix sum of the
// rows and the columns of the given matrix
static void prefix_calculate(int [,] A,
                    int [,] row,
                    int [,] col)
{
 
    // Number of rows and cols
    int n = (int)A.GetLength(0);
    int m = (int)A.GetLength(1);
 
    // First column of the row prefix array
    for (int i = 0; i < n; ++i)
    {
        row[i, 0] = A[i, 0];
    }
 
    // Update the prefix sum for the rows
    for (int i = 0; i < n; ++i)
    {
        for (int j = 1; j < m; ++j)
        {
            row[i, j] = row[i, j - 1]
                        + A[i, j];
        }
    }
 
    // First row of the column prefix array
    for (int i = 0; i < m; ++i)
    {
        col[0, i] = A[0, i];
    }
 
    // Update the prefix sum for the columns
    for (int i = 0; i < m; ++i)
    {
        for (int j = 1; j < n; ++j)
        {
            col[j, i] = A[j, i]
                        + col[j - 1, i];
        }
    }
}
 
// Function to return the perimeter
// of the square having top-left corner
// at (i, j) and size k
static int perimeter(int i, int j, int k,
                int [,] row, int [,] col,
                int [,] A)
{
 
    // i and j represent the top left
    // corner of the square and
    // k is the size
    int row_s, col_s;
 
    // Get the upper row sum
    if (j == 0)
        row_s = 0;
    else
        row_s = row[i, j - 1];
 
    // Get the left column sum
    if (i == 0)
        col_s = 0;
    else
        col_s = col[i - 1, j];
 
    int upper_row = row[i, j + k] - row_s;
    int left_col = col[i + k, j] - col_s;
 
    // At the distance of k in
    // both direction
    if (j == 0)
        row_s = 0;
    else
        row_s = row[i + k, j - 1];
 
    if (i == 0)
        col_s = 0;
    else
        col_s = col[i - 1, j + k];
 
    int lower_row = row[i + k, j + k] - row_s;
    int right_col = col[i + k, j + k] - col_s;
 
    // The perimeter will be
    // sum of all the values
    int sum = upper_row + lower_row +
                left_col + right_col;
 
    // Since all the corners are
    // included twice, they need to
    // be subtract from the sum
    sum -= (A[i, j] + A[i + k, j] +
            A[i, j + k] + A[i + k, j + k]);
 
    return sum;
}
 
// Function to return the maximum perimeter
// of a square in the given matrix
static int maxPerimeter(int [,] A)
{
 
    // Number of rows and cols
    int n = (int)A.GetLength(0);
    int m = (int)A.GetLength(1);
 
    int [,] row = new int[n, m];
    int [,] col = new int[n, m];
 
    // Function call to calculate
    // the prefix sum of rows and cols
    prefix_calculate(A, row, col);
 
    // To store the maximum perimeter
    int maxPer = 0;
 
    // Nested loops to choose the top-left
    // corner of the square
    for (int i = 0; i < n; ++i)
    {
        for (int j = 0; j < m; ++j)
        {
 
            // Loop for the size of the square
            for (int k = 0; k < Math.Min(n - i, m - j); ++k)
            {
 
                // Get the perimeter of the current square
                int perimtr = perimeter(i, j, k,
                                        row, col, A);
 
                // Update the maximum perimeter so far
                maxPer = Math.Max(maxPer, perimtr);
            }
        }
    }
    return maxPer;
}
 
// Driver code
public static void Main(String[] args)
{
    int [,] A = {{ 1, 1, 0 },
                { 1, 1, 1 },
                { 0, 1, 1 }};
 
    Console.Write(maxPerimeter(A));
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
// Javascript implementation of the approach
 
// Function to calculate the prefix sum of the
// rows and the columns of the given matrix
function prefix_calculate(A, row, col)
{
 
    // Number of rows and cols
    let n = A.length;
    let m = A[0].length;
   
    // First column of the row prefix array
    for (let i = 0; i < n; ++i)
    {
        row[i][0] = A[i][0];
    }
   
    // Update the prefix sum for the rows
    for (let i = 0; i < n; ++i)
    {
        for (let j = 1; j < m; ++j)
        {
            row[i][j] = row[i][j - 1]
                        + A[i][j];
        }
    }
   
    // First row of the column prefix array
    for (let i = 0; i < m; ++i)
    {
        col[0][i] = A[0][i];
    }
   
    // Update the prefix sum for the columns
    for (let i = 0; i < m; ++i)
    {
        for (let j = 1; j < n; ++j)
        {
            col[j][i] = A[j][i]
                        + col[j - 1][i];
        }
    }
}
 
// Function to return the perimeter
// of the square having top-left corner
// at (i, j) and size k
function perimeter(i,j,k,row,col,A)
{
    // i and j represent the top left
    // corner of the square and
    // k is the size
    let row_s, col_s;
   
    // Get the upper row sum
    if (j == 0)
        row_s = 0;
    else
        row_s = row[i][j - 1];
   
    // Get the left column sum
    if (i == 0)
        col_s = 0;
    else
        col_s = col[i - 1][j];
   
    let upper_row = row[i][j + k] - row_s;
    let left_col = col[i + k][j] - col_s;
   
    // At the distance of k in
    // both direction
    if (j == 0)
        row_s = 0;
    else
        row_s = row[i + k][j - 1];
   
    if (i == 0)
        col_s = 0;
    else
        col_s = col[i - 1][j + k];
   
    let lower_row = row[i + k][j + k] - row_s;
    let right_col = col[i + k][j + k] - col_s;
   
    // The perimeter will be
    // sum of all the values
    let sum = upper_row + lower_row +
                left_col + right_col;
   
    // Since all the corners are
    // included twice, they need to
    // be subtract from the sum
    sum -= (A[i][j] + A[i + k][j] +
             A[i][j + k] + A[i + k][j + k]);
   
    return sum;
}
 
// Function to return the maximum perimeter
// of a square in the given matrix
function maxPerimeter(A)
{
    // Number of rows and cols
    let n = A.length;
    let m = A[0].length;
   
    let row = new Array(n);
    let col = new Array(n);
     
    for(let i=0;i<n;i++)
    {
        row[i]=new Array(m);
        col[i]=new Array(m);
    }
     
   
    // Function call to calculate
    // the prefix sum of rows and cols
    prefix_calculate(A, row, col);
   
    // To store the maximum perimeter
    let maxPer = 0;
   
    // Nested loops to choose the top-left
    // corner of the square
    for (let i = 0; i < n; ++i)
    {
        for (let j = 0; j < m; ++j)
        {
   
            // Loop for the size of the square
            for (let k = 0; k < Math.min(n - i, m - j); ++k)
            {
   
                // Get the perimeter of the current square
                let perimtr = perimeter(i, j, k,
                                        row, col, A);
   
                // Update the maximum perimeter so far
                maxPer = Math.max(maxPer, perimtr);
            }
        }
    }
   
    return maxPer;
}
 
// Driver code
let A = [[1, 1, 0 ],[1, 1, 1],[0, 1, 1]];
document.write(maxPerimeter(A));
 
// This code is contributed by unknown2108
</script>
Output: 
6

 

Time Complexity: O(N * M * min(N, M))
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!