Skip to content
Related Articles

Related Articles

Improve Article

Maximum area of rectangle possible with given perimeter

  • Last Updated : 30 May, 2021

Given the perimeter of a rectangle, the task is to find the maximum area of a rectangle which can use n-unit length as its perimeter. 

Note: Length and Breadth must be an integral value. 

Example: 

Input: perimeter = 15
Output: Maximum Area = 12

Input: perimeter = 16
Output: Maximum Area = 16

Approach: For area to be maximum of any rectangle the difference of length and breadth must be minimal. So, in such case the length must be ceil (perimeter / 4) and breadth will be be floor(perimeter /4). Hence the maximum area of a rectangle with given perimeter is equal to ceil(perimeter/4) * floor(perimeter/4).

Below is the implementation of the above approach:  



C++




// C++ to find maximum area rectangle
#include <bits/stdc++.h>
using namespace std;
 
// Function to find max area
int maxArea(float perimeter)
{
    int length = (int)ceil(perimeter / 4);
    int breadth = (int)floor(perimeter / 4);
 
    // return area
    return length * breadth;
}
 
// Driver code
int main()
{
    float n = 38;
    cout << "Maximum Area = " << maxArea(n);
 
    return 0;
}

Java




//Java to find maximum area rectangle
 
import java.io.*;
 
class GFG {
// Function to find max area
static int maxArea(float perimeter)
{
    int length = (int)Math.ceil(perimeter / 4);
    int breadth = (int)Math.floor(perimeter / 4);
 
// return area
return length * breadth;
}
 
// Driver code
     
    public static void main (String[] args) {
 
        float n = 38;
        System.out.println("Maximum Area = " +
                maxArea(n));
         
    }
}

Python3




# Python3 program to find
# maximum area rectangle
from math import ceil, floor
 
# Function to find max area
def maxArea(perimeter):
    length = int(ceil(perimeter / 4))
    breadth = int(floor(perimeter / 4))
 
    # return area
    return length * breadth
 
# Driver code
if __name__ == '__main__':
    n = 38
    print("Maximum Area =", maxArea(n))

C#




// C# to find maximum area rectangle
using System;
 
class GFG
{
// Function to find max area
static int maxArea(float perimeter)
{
    int length = (int)Math.Ceiling(perimeter / 4);
    int breadth = (int)Math.Floor(perimeter / 4);
 
    // return area
    return length * breadth;
}
 
// Driver code
public static void Main()
{
    float n = 38;
    Console.WriteLine("Maximum Area = " +
                             maxArea(n));
}
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)

PHP




<?php
// PHP to find maximum area rectangle
 
// Function to find max area
function maxArea($perimeter)
{
    $length = (int)ceil($perimeter / 4);
    $breadth = (int)floor($perimeter / 4);
 
    // return area
    return ($length * $breadth);
}
 
// Driver code
$n = 38;
echo "Maximum Area = " , maxArea($n);
 
// This code is contributed by jit_t
?>

Javascript




<script>
 
// JavaScript to find maximum area rectangle
 
// Function to find max area
function maxArea(perimeter)
{
    let length = Math.ceil(perimeter / 4);
    let breadth = Math.floor(perimeter / 4);
 
    // return area
    return length * breadth;
}
 
// Driver code
let n = 38;
 
document.write("Maximum Area = " + maxArea(n));
 
// This code is contributed by Manoj.
 
</script>
Output: 
Maximum Area = 90

 

Time Complexity: O(1)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :