Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Maximize sum of given array by rearranging array such that the difference between adjacent elements is atmost 1

  • Difficulty Level : Medium
  • Last Updated : 20 Jul, 2021

Given an array arr[] consisting of N positive integers, the task is to maximize the sum of the array element such that the first element of the array is 1 and the difference between the adjacent elements of the array is at most 1 after performing the following operations:

  • Rearrange the array elements in any way.
  • Reduce any element to any number that is at least 1.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {3, 5, 1}
Output: 6
Explanation:
One possible arrangement is {1, 2, 3} having maximum possible sum 6.



Input: arr[] = {1, 2, 2, 2, 3, 4, 5}
Output: 19
Explanation:
One possible arrangement is {1, 2, 2, 2, 3, 4, 5} having maximum possible sum 19.

Naive Approach: The simplest approach is to sort the given array then traverse in the sorted array and reduced the element that doesn’t satisfy the given condition. 

Time Complexity: O(N * log N), where N is the size of the given array.
Auxiliary Space: O(N)

Efficient Approach: The idea is to use the Hashing concept of storing the frequencies of the elements of the given array. Follow the below steps to solve the problem:

  • Create an auxiliary array count[] of size (N+1) to store frequency of arr[i].
  • While storing the frequency in count[] and if arr[i] greater than N then increment count[N].
  • Initialize the size and ans as 0 that stores the previously selected integer and maximum possible sum respectively.
  • Traverse the given array count[] array using variable K and do the following:
    • Iterate while a loop for each K until count[K] > 0 and size < K.
    • Increment size by 1 and ans by size and reduce count[K] by 1 inside while loop.
    • Increment ans with K*count[K] after the while loop ends.
  • After the above steps, print the value of ans as the maximum possible sum.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <iostream>
using namespace std;
 
// Function to find maximum possible
// sum after changing the array elements
// as per the given constraints
long maxSum(int a[], int n)
{
     
    // Stores the frequency of
    // elements in given array
    int count[n + 1] = {0};
 
    // Update frequency
    for(int i = 0; i < n; i++)
        count[min(a[i], n)]++;
 
    // Stores the previously
    // selected integer
    int size = 0;
 
    // Stores the maximum possible sum
    long ans = 0;
 
    // Traverse over array count[]
    for(int k = 1; k <= n; k++)
    {
         
        // Run loop for each k
        while (count[k] > 0 && size < k)
        {
            size++;
            ans += size;
            count[k]--;
        }
 
        // Update ans
        ans += k * count[k];
    }
 
    // Return maximum possible sum
    return ans;
}
 
// Driver Code
int main()
{
     
    // Given array arr[]
    int arr[] = { 3, 5, 1 };
 
    // Size of array
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << (maxSum(arr, n));
    return 0;
}
 
// This code is contributed by akhilsaini

Java




// Java program for the above approach
 
import java.util.*;
 
class GFG {
 
    // Function to find maximum possible
    // sum after changing the array elements
    // as per the given constraints
    static long maxSum(int[] a)
    {
        // Length of given array
        int n = a.length;
 
        // Stores the frequency of
        // elements in given array
        int[] count = new int[n + 1];
 
        // Update frequency
        for (int x : a)
            count[Math.min(x, n)]++;
 
        // stores the previously
        // selected integer
        int size = 0;
 
        // Stores the maximum possible sum
        long ans = 0;
 
        // Traverse over array count[]
        for (int k = 1; k <= n; k++) {
 
            // Run loop for each k
            while (count[k] > 0 && size < k) {
                size++;
                ans += size;
                count[k]--;
            }
 
            // Update ans
            ans += k * count[k];
        }
 
        // Return maximum possible sum
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given array arr[]
        int[] arr = { 3, 5, 1 };
 
        // Function Call
        System.out.println(maxSum(arr));
    }
}

Python3




# Python3 program for the above approach
 
# Function to find maximum possible
# sum after changing the array elements
# as per the given constraints
def maxSum(a, n):
 
    # Stores the frequency of
    # elements in given array
    count = [0] * (n + 1)
 
    # Update frequency
    for i in range(0, n):
        count[min(a[i], n)] += 1
 
    # stores the previously
    # selected integer
    size = 0
 
    # Stores the maximum possible sum
    ans = 0
 
    # Traverse over array count[]
    for k in range(1, n + 1):
         
        # Run loop for each k
        while (count[k] > 0 and size < k):
            size += 1
            ans += size
            count[k] -= 1
 
        # Update ans
        ans += k * count[k]
 
    # Return maximum possible sum
    return ans
 
# Driver Code
if __name__ == '__main__':
 
    # Given array arr[]
    arr = [ 3, 5, 1 ]
 
    # Size of array
    n = len(arr)
 
    # Function Call
    print(maxSum(arr, n))
 
# This code is contributed by akhilsaini

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find maximum possible
// sum after changing the array elements
// as per the given constraints
static long maxSum(int[] a)
{
     
    // Length of given array
    int n = a.Length;
 
    // Stores the frequency of
    // elements in given array
    int[] count = new int[n + 1];
 
    // Update frequency
    for(int i = 0; i < n; i++)
        count[Math.Min(a[i], n)]++;
 
    // stores the previously
    // selected integer
    int size = 0;
 
    // Stores the maximum possible sum
    long ans = 0;
 
    // Traverse over array count[]
    for(int k = 1; k <= n; k++)
    {
         
        // Run loop for each k
        while (count[k] > 0 && size < k)
        {
            size++;
            ans += size;
            count[k]--;
        }
 
        // Update ans
        ans += k * count[k];
    }
 
    // Return maximum possible sum
    return ans;
}
 
// Driver Code
public static void Main()
{
     
    // Given array arr[]
    int[] arr = { 3, 5, 1 };
 
    // Function call
    Console.Write(maxSum(arr));
}
}
 
// This code is contributed by akhilsaini

Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find maximum possible
// sum after changing the array elements
// as per the given constraints
function maxSum( a, n)
{
     
    // Stores the frequency of
    // elements in given array
    var count = Array(n+1).fill(0);
 
    // Update frequency
    for(var i = 0; i < n; i++)
        count[Math.min(a[i], n)]++;
 
    // Stores the previously
    // selected integer
    var size = 0;
 
    // Stores the maximum possible sum
    var ans = 0;
 
    // Traverse over array count[]
    for(var k = 1; k <= n; k++)
    {
         
        // Run loop for each k
        while (count[k] > 0 && size < k)
        {
            size++;
            ans += size;
            count[k]--;
        }
 
        // Update ans
        ans += k * count[k];
    }
 
    // Return maximum possible sum
    return ans;
}
 
// Driver Code
 
// Given array arr[]
var arr = [ 3, 5, 1 ];
 
// Size of array
var n = arr.length;
 
// Function Call
document.write(maxSum(arr, n));
 
// This code is contributed by noob2000.
</script>

 
 

Output: 
6

 

 

Time Complexity: O(N), where N is the size of the given array.
Auxiliary Space: O(N)

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :