Open In App
Related Articles

Maximize element at index K in an array with at most sum M and difference between adjacent elements at most 1

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a positive integer N, the task is to construct an array of length N and find the maximize the value at index K such that the sum of all the array elements is at most M and the absolute difference between any two consecutive array elements is at most 1.

Examples:

Input: N = 3, M = 7, K = 1
Output: 3
Explanation: 
According to the given constraints, the array with values {2, 3, 2}maximizes the value at index 1. Therefore, the required output is 3.

Input: N = 3, M = 8, K = 1
Output: 3

Approach: The idea is to achieve the maximum value at index K and to decrease the sum of other elements to meet the criteria of the sum of the array to be at most M. Follow the steps below:

  • Let the value at index K be X. So the element at K – 1 is X – 1, at K – 2 is X – 2 and so on.
  • At index 0 the value is X – K. Similarly, at index K + 1 the value is X – 1 and so on upto X – (N – K – 1) at index N – 1.
  • So to achieve the maximum value at index K, the array structure would be X – K, X – (K – 1), …., X – 2, X – 1, X, X – 1, X – 2, ….., X – (N – K – 1).
  • So after arranging the equation, it becomes K * X – (1 + 2 + …. + K) + X + (N – K – 1) * X – (1 + 2 + …. + (N – K – 1)) ? M.

Follow the steps to solve the above equation:

  • Calculate (1 + 2 + …. + K) using K * (K + 1) / 2 and (1 + 2 + ….. + (N – K – 1)) using (N – K – 1) * (N – K) / 2 and store in S1 and S2 respectively.
  • This reduces the equation to X * (K + 1 + N – K – 1) ? M + S1 + S2.
  • Now, the maximum value of X can be obtained by calculating (M + S1 + S2) / N.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the maximum
// possible value at index K
void maxValueAtIndexK(int N, int K, int M)
{
    // Stores the sum of elements
    // in the left and right of index K
    int S1 = 0, S2 = 0;
 
    S1 = K * (K + 1) / 2;
    S2 = (N - K - 1) * (N - K) / 2;
 
    // Stores the maximum
    // possible value at index K
    int X = (M + S1 + S2) / N;
 
    // Print the answer
    cout << X;
}
 
// Driver Code
int main()
{
    // Given N, K & M
    int N = 3, K = 1, M = 7;
    maxValueAtIndexK(N, K, M);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
 
// Function to calculate the maximum
// possible value at index K
static void maxValueAtIndexK(int N, int K,
                             int M)
{
     
    // Stores the sum of elements
    // in the left and right of index K
    int S1 = 0, S2 = 0;
 
    S1 = K * (K + 1) / 2;
    S2 = (N - K - 1) * (N - K) / 2;
 
    // Stores the maximum
    // possible value at index K
    int X = (M + S1 + S2) / N;
 
    // Print the answer
    System.out.println(X);
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given N, K & M
    int N = 3, K = 1, M = 7;
     
    maxValueAtIndexK(N, K, M);
}
}
 
// This code is contributed by Dharanendra L V


Python3




# Python program for the above approach
 
# Function to calculate the maximum
# possible value at index K
def maxValueAtIndexK(N, K, M):
 
    # Stores the sum of elements
    # in the left and right of index K
    S1 = 0; S2 = 0;
    S1 = K * (K + 1) // 2;
    S2 = (N - K - 1) * (N - K) // 2;
 
    # Stores the maximum
    # possible value at index K
    X = (M + S1 + S2) // N;
 
    # Print the answer
    print(X);
 
# Driver Code
if __name__ == '__main__':
 
    # Given N, K & M
    N = 3; K = 1; M = 7;
    maxValueAtIndexK(N, K, M);
 
# This code is contributed by 29AjayKumar


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to calculate the maximum
// possible value at index K
static void maxValueAtIndexK(int N, int K,
                             int M)
{
     
    // Stores the sum of elements
    // in the left and right of index K
    int S1 = 0, S2 = 0;
 
    S1 = K * (K + 1) / 2;
    S2 = (N - K - 1) * (N - K) / 2;
 
    // Stores the maximum
    // possible value at index K
    int X = (M + S1 + S2) / N;
 
    // Print the answer
    Console.WriteLine(X);
}
 
// Driver Code
static public void Main()
{
     
    // Given N, K & M
    int N = 3, K = 1, M = 7;
     
    maxValueAtIndexK(N, K, M);
}
}
 
// This code is contributed by Dharanendra L V


Javascript




<script>
// JavaScript program for
// the above approach
  
// Function to calculate the maximum
// possible value at index K
function maxValueAtIndexK(N, K, M)
{
    // Stores the sum of elements
    // in the left and right of index K
    let S1 = 0, S2 = 0;
 
    S1 = K * (K + 1) / 2;
    S2 = (N - K - 1) * (N - K) / 2;
 
    // Stores the maximum
    // possible value at index K
    let X = (M + S1 + S2) / N;
 
    // Print the answer
     document.write(X);
}
 
// Driver Code
  
    // Given N, K & M
    let N = 3, K = 1, M = 7;
    maxValueAtIndexK(N, K, M);
  
</script>


Output: 

3

 

Time Complexity: O(1)
Auxiliary Space: O(1)

 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 28 Feb, 2022
Like Article
Save Article
Similar Reads
Related Tutorials