# Maximize difference between maximum and minimum array elements after K operations

Given an array arr[] of size N and a positive integer K, the task is to find the maximum difference between the largest element and the smallest element in the array by incrementing or decrementing array elements by 1, K times.

Examples:

Input: arr[] = {7, 7, 7, 7}, K = 1
Output: 14
Explanation: Decrementing the value of arr[0] and incrementing the value of arr[3] by 7 modifies arr[] = {0, 7, 7, 14}. Therefore, the maximum difference between the largest element and the smallest element of the array is 14

Input: arr[] = {0, 0, 0, 0, 0}, K = 2
Output: 0
Explanation: Since all array elements are 0, decrementing any array element makes that element less than 0. Therefore, the required output is 0.

Approach: Follow the steps below to solve the problem:

Below is the implementation of the above approach:

## C++

 `// C++ program to implement` `// the above approach`   `#include ` `using` `namespace` `std;`   `// Function to find the maximum difference` `// between the maximum and minimum in the` `// array after K operations` `int` `maxDiffLargSmallOper(``int` `arr[],` `                         ``int` `N, ``int` `K)` `{` `    ``// Stores maximum difference between` `    ``// largest  and smallest array element` `    ``int` `maxDiff = 0;`   `    ``// Sort the array in descending order` `    ``sort(arr, arr + N, greater<``int``>());`   `    ``// Traverse the array arr[]` `    ``for` `(``int` `i = 0; i <= min(K, N - 1);` `         ``i++) {`   `        ``// Update maxDiff` `        ``maxDiff += arr[i];` `    ``}`   `    ``return` `maxDiff;` `}`   `// Driver Code` `int` `main()` `{`   `    ``int` `arr[] = { 7, 7, 7, 7 };` `    ``int` `N = ``sizeof``(arr)` `            ``/ ``sizeof``(arr[0]);` `    ``int` `K = 1;` `    ``cout << maxDiffLargSmallOper(arr, N, K);`   `    ``return` `0;` `}`

## Java

 `// Java program to implement` `// the above approach` `import` `java.util.*;`   `class` `GFG{` `    `  `// Reverse array` `static` `int``[] reverse(``int` `a[])` `{` `    ``int` `i, n = a.length, t;` `    ``for``(i = ``0``; i < n / ``2``; i++) ` `    ``{` `        ``t = a[i];` `        ``a[i] = a[n - i - ``1``];` `        ``a[n - i - ``1``] = t;` `    ``}` `    ``return` `a;` `}`   `// Function to find the maximum difference` `// between the maximum and minimum in the` `// array after K operations` `static` `int` `maxDiffLargSmallOper(``int` `arr[],` `                                ``int` `N, ``int` `K)` `{` `    `  `    ``// Stores maximum difference between` `    ``// largest  and smallest array element` `    ``int` `maxDiff = ``0``;`   `    ``// Sort the array in descending order` `    ``Arrays.sort(arr);` `    ``arr = reverse(arr);` `    `  `    ``// Traverse the array arr[]` `    ``for``(``int` `i = ``0``; i <= Math.min(K, N - ``1``); i++) ` `    ``{` `        `  `        ``// Update maxDiff` `        ``maxDiff += arr[i];` `    ``}` `    `  `    ``return` `maxDiff;` `}`   `// Driver Code` `public` `static` `void` `main(String[] args)` `{` `    ``int` `arr[] = { ``7``, ``7``, ``7``, ``7` `};` `    ``int` `N = arr.length;` `    ``int` `K = ``1``;` `    `  `    ``System.out.print(maxDiffLargSmallOper(arr, N, K));` `}` `}`   `// This code is contributed by Amit Katiyar`

## Python3

 `# Python3 program to implement` `# the above approach`   `# Function to find the maximum difference` `# between the maximum and minimum in the` `# array after K operations` `def` `maxDiffLargSmallOper(arr, N, K):` `    `  `    `  `    ``# Stores maximum difference between` `    ``# largest  and smallest array element` `    ``maxDiff ``=` `0``;` `    `  `    ``# Sort the array in descending order` `    ``arr.sort(reverse ``=` `True``);` `    `  `    `  `    ``# Traverse the array arr[]` `    ``for` `i  ``in`  `range``(``min``(K ``+` `1``, N)):` `        `  `        ``# Update maxDiff` `        ``maxDiff ``+``=` `arr[i];` `    `  `    ``return` `maxDiff;`   `# Driver Code` `if` `__name__ ``=``=` `"__main__"``:  `   `    ``arr ``=` `[ ``7``, ``7``, ``7``, ``7` `];` `    ``N ``=` `len``(arr)` `    ``K ``=` `1``;` `    ``print``(maxDiffLargSmallOper(arr, N, K));`

## C#

 `// C# program to implement ` `// the above approach ` `using` `System;`   `class` `GFG{`   `// Function to find the maximum difference` `// between the maximum and minimum in the` `// array after K operations` `static` `int` `maxDiffLargSmallOper(``int` `[]arr, ``int` `N, ` `                                ``int` `K)` `{` `    `  `    ``// Stores maximum difference between` `    ``// largest and smallest array element` `    ``int` `maxDiff = 0;`   `    ``// Sort the array in descending order` `    ``Array.Sort(arr);` `    ``Array.Reverse(arr);` `    `  `    ``// Traverse the array arr[]` `    ``for``(``int` `i = 0; i <= Math.Min(K, N - 1); i++)` `    ``{` `        `  `        ``// Update maxDiff` `        ``maxDiff += arr[i];` `    ``}` `    ``return` `maxDiff;` `}`   `// Driver code` `public` `static` `void` `Main()` `{` `    ``int` `[] arr = ``new` `int``[]{ 7, 7, 7, 7 };` `    ``int` `N = arr.Length;` `    ``int` `K = 1;` `    `  `    ``Console.Write(maxDiffLargSmallOper(arr, N, K));` `}` `}`   `// This code is contributed by mohit kumar 29`

## Javascript

 ``

Output:

`14`

Time Complexity: O(N * log(N))
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next