Open In App
Related Articles

Maclaurin series

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report
Prerequisite – Taylor theorem and Taylor series We know that formula for expansion of Taylor series is written as: f(x)=f(a)+\sum_{n=1}^{\infty}\frac{f^n(a)}{n!}(x-a)^n Now if we put a=0 in this formula we will get the formula for expansion of Maclaurin series. T hus Maclaurin series expansion can be given by the formula – f(x)=f(0)+\sum_{n=1}^{\infty}\frac{f^n(0)}{n!}(x)^n Maclaurin series expansion of some elementary functions :
  1. Exponential function : f(x)=e^x Differentiating n times, f^n(x)=e^x. So we get f^n(0)=1 Thus e^x = 1+\frac{x}{1!}+ \frac{x^2}{2!}+ \frac{x^3}{3!}+....+ \frac{x^{n-1}}{(n-1)!}+\frac{x^n}{n!}
  2. f(x) = cos x \cosx= 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+…..
  3. f(x) = sin x \sinx = x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+....
  4. f(x) = (ax + b)^m (ax+b)^m=b^m[1+m(a/b)\frac{x}{1!}+m(m-1)(a/b)^2\frac{x^2}{2!}+m(m-1)(m-2)(a/b)^3\frac{x^3}{3!}+.....
  5. f(x) = ln(1+x) \ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\frac{x^5}{5}+.....+(-1)^{n-1}\frac{x^n}{n}+.....
  6. f(x) = ln(1-x) \ln(1-x)=-(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\frac{x^5}{5}+.....+\frac{x^n}{n}+....)
Example-1: Find the first seven terms of f(x) = ln(sec x). Explanation : f(x) = ln(\secx) f(0) = ln(\sec0)=0 Differentiating w.r.t. x, f'(x)= (1/secx).\secx.\tanx = \tan x f'(0)= \tan 0 = 0 f''(x)= \sec^2x\scriptstyle\implies f''(0) = \sec^20=1 f'''(x)= 2\secx.\secx.\tanx=2sec^2x.tanx\scriptstyle\implies f'''(0) = 0 f''''(x)= 4\sec^2x.\tan^2x+2\sec^4x\scriptstyle\implies f''''(0) = 0+2 = 2 f'''''(x)= 8\sec^2x.\tan^3x+16\sec4x.\tanx\scriptstyle\implies f'''''(0) = 0 f''''''(x)= 16\sec^2x.\tan^4x+88\sec4x.\tan^2x+16\sec^6x\scriptstyle\implies f''''''(0) = 16 Thus we get the Maclaurin series as – f(x) = f(0)+f'(0).x/1!+f''(0).x^2/2!+f'''(0).x^3/3!+.... \text{upto 7 terms} f(x)=ln(\secx)=0+1.x^2/2!+0+2.x^4/4!+0+16x^6/6!+.... f(x)=\frac{x^2}{2}+\frac{x^4}{12}+\frac{x^6}{45}+.... Example-2: Evaluate Maclaurin series for tan x. Explanation : f(x) = \tan x, f(0)=0 f'(x) = \sec^2x \scriptstyle\implies f'(0)=1 f''(x) = 2\sec^x.\secx.\tanx=2\sec^2x.\tanx=2(\tanx+\tan^3x) \scriptstyle\implies f''(0)=0 f'''(x) = 2+8\tan^2x+6\tan^4x \scriptstyle\implies f'''(0)=2 f''''(x) = 16\tanx+40\tan^3x+24\tan^5x \scriptstyle\implies f''''(0)=0 f'''''(x) = 16\sec^2x+120\tan^2x.sec^2x+120\tan^4x\sec^2x \scriptstyle\implies f'''''(0)=16 Thus we get Maclaurin series as – \tanx=x+\frac{1}{3}x^3+\frac{2}{15}x^5+.......

Last Updated : 16 Jun, 2020
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads