K’th Largest element in BST using constant extra space

Given a binary search tree, task is to find Kth largest element in the binary search tree.
Example:

Input :  k = 3
Root of following BST
10
/    \
4      20
/      /   \
2     15     40
Output : 15

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The idea is to use Reverse Morris Traversal which is based on Threaded Binary Trees. Threaded binary trees use the NULL pointers to store the successor and predecessor information which helps us to utilize the wasted memory by those NULL pointers.

The special thing about Morris traversal is that we can do Inorder traversal without using stack or recursion which saves us memory consumed by stack or recursion call stack.

Reverse Morris traversal is just the reverse of Morris traversal which is majorly used to do Reverse Inorder traversal with constant O(1) extra memory consumed as it does not uses any Stack or Recursion.

To find Kth largest element in a Binary search tree, the simplest logic is to do reverse inorder traversal and while doing reverse inorder traversal simply keep a count of number of Nodes visited. When the count becomes equal to k, we stop the traversal and print the data. It uses the fact that reverse inorder traversal will give us a list sorted in descending order.

Algorithm

1) Initialize Current as root.
2) Initialize a count variable to 0.
3) While current is not NULL :
3.1) If current has no right child
a) Increment count and check if count is equal to K.
1) If count is equal to K, simply return current
Node as it is the Kth largest Node.
b) Otherwise, Move to the left child of current.

3.2) Else, here we have 2 cases:
a) Find the inorder successor of current Node.
Inorder successor is the left most Node
in the right subtree or right child itself.
b) If the left child of the inorder successor is NULL:
1) Set current as the left child of its inorder
successor.
2) Move current Node to its right.
c) Else, if the threaded link between the current Node
and it's inorder successor already exists :
1) Set left pointer of the inorder successor as NULL.
2) Increment count and check if count is equal to K.
a) If count is equal to K, simply return current
Node as it is the Kth largest Node.

3) Otherwise, Move current to it's left child.

C++

 // CPP code for finding K-th largest Node using O(1) // extra memory and reverse Morris traversal. #include using namespace std;    struct Node {     int data;     struct Node *left, *right; };    // helper function to create a new Node Node* newNode(int data) {     Node* temp = new Node;     temp->data = data;     temp->right = temp->left = NULL;     return temp; }    Node* KthLargestUsingMorrisTraversal(Node* root, int k) {     Node* curr = root;     Node* Klargest = NULL;        // count variable to keep count of visited Nodes     int count = 0;        while (curr != NULL) {         // if right child is NULL         if (curr->right == NULL) {                // first increment count and check if count = k             if (++count == k)                 Klargest = curr;                // otherwise move to the left child             curr = curr->left;         }            else {                // find inorder successor of current Node             Node* succ = curr->right;                while (succ->left != NULL && succ->left != curr)                 succ = succ->left;                if (succ->left == NULL) {                    // set left child of successor to the                 // current Node                 succ->left = curr;                    // move current to its right                 curr = curr->right;             }                // restoring the tree back to original binary             //  search tree removing threaded links             else {                    succ->left = NULL;                    if (++count == k)                     Klargest = curr;                    // move current to its left child                 curr = curr->left;             }         }     }        return Klargest; }    int main() {     // Your C++ Code     /* Constructed binary tree is           4         /   \        2     7      /  \   /  \     1    3  6    10 */        Node* root = newNode(4);     root->left = newNode(2);     root->right = newNode(7);     root->left->left = newNode(1);     root->left->right = newNode(3);     root->right->left = newNode(6);     root->right->right = newNode(10);        cout << "Finding K-th largest Node in BST : "          << KthLargestUsingMorrisTraversal(root, 2)->data;        return 0; }

Java

 // Java Program for finding K-th largest Node using O(1)  // extra memory and reverse Morris traversal.  class GfG  {     static class Node  {      int data;      Node left, right;  }    // helper function to create a new Node  static Node newNode(int data)  {      Node temp = new Node();      temp.data = data;      temp.right = null;     temp.left = null;      return temp;  }     static Node KthLargestUsingMorrisTraversal(Node root, int k)  {      Node curr = root;      Node Klargest = null;         // count variable to keep count of visited Nodes      int count = 0;         while (curr != null)     {          // if right child is NULL          if (curr.right == null)          {                 // first increment count and check if count = k              if (++count == k)                  Klargest = curr;                 // otherwise move to the left child              curr = curr.left;          }             else          {                 // find inorder successor of current Node              Node succ = curr.right;                 while (succ.left != null && succ.left != curr)                  succ = succ.left;                 if (succ.left == null)             {                     // set left child of successor to the                  // current Node                  succ.left = curr;                     // move current to its right                  curr = curr.right;              }                 // restoring the tree back to original binary              // search tree removing threaded links              else             {                     succ.left = null;                     if (++count == k)                      Klargest = curr;                     // move current to its left child                  curr = curr.left;              }          }      }      return Klargest;  }     // Driver code public static void main(String[] args)  {      // Your Java Code      /* Constructed binary tree is          4          / \      2 7      / \ / \      1 3 6 10 */        Node root = newNode(4);      root.left = newNode(2);      root.right = newNode(7);      root.left.left = newNode(1);      root.left.right = newNode(3);      root.right.left = newNode(6);      root.right.right = newNode(10);         System.out.println("Finding K-th largest Node in BST : " +                      KthLargestUsingMorrisTraversal(root, 2).data);  }  }

Python3

 # Python3 code for finding K-th largest  # Node using O(1) extra memory and  # reverse Morris traversal.     # helper function to create a new Node  class newNode:     def __init__(self, data):         self.data = data          self.right = self.left = None    def KthLargestUsingMorrisTraversal(root, k):     curr = root      Klargest = None        # count variable to keep count      # of visited Nodes      count = 0        while (curr != None):                    # if right child is None          if (curr.right == None):                 # first increment count and             # check if count = k             count += 1             if (count == k):                  Klargest = curr                 # otherwise move to the left child              curr = curr.left            else:                 # find inorder successor of              # current Node              succ = curr.right                 while (succ.left != None and                     succ.left != curr):                  succ = succ.left                 if (succ.left == None):                     # set left child of successor                  # to the current Node                  succ.left = curr                     # move current to its right                  curr = curr.right                # restoring the tree back to               # original binary search tree             # removing threaded links              else:                    succ.left = None                 count += 1                 if (count == k):                      Klargest = curr                     # move current to its left child                  curr = curr.left        return Klargest    # Driver Code if __name__ == '__main__':        # Constructed binary tree is      #     4      #     / \      # 2     7      # / \ / \      # 1 3 6 10      root = newNode(4)      root.left = newNode(2)      root.right = newNode(7)      root.left.left = newNode(1)      root.left.right = newNode(3)      root.right.left = newNode(6)      root.right.right = newNode(10)         print("Finding K-th largest Node in BST : ",             KthLargestUsingMorrisTraversal(root, 2).data)    # This code is contributed by PranchalK

C#

 // C# Program for finding K-th largest Node using O(1)  // extra memory and reverse Morris traversal.  using System; using System.Collections.Generic;    class GfG  {     public class Node  {      public int data;      public Node left, right;  }    // helper function to create a new Node  static Node newNode(int data)  {      Node temp = new Node();      temp.data = data;      temp.right = null;     temp.left = null;      return temp;  }     static Node KthLargestUsingMorrisTraversal(Node root, int k)  {      Node curr = root;      Node Klargest = null;         // count variable to keep count of visited Nodes      int count = 0;         while (curr != null)     {          // if right child is NULL          if (curr.right == null)          {                 // first increment count and check if count = k              if (++count == k)                  Klargest = curr;                 // otherwise move to the left child              curr = curr.left;          }             else         {                 // find inorder successor of current Node              Node succ = curr.right;                 while (succ.left != null && succ.left != curr)                  succ = succ.left;                 if (succ.left == null)             {                     // set left child of successor to the                  // current Node                  succ.left = curr;                     // move current to its right                  curr = curr.right;              }                 // restoring the tree back to original binary              // search tree removing threaded links              else             {                     succ.left = null;                     if (++count == k)                      Klargest = curr;                     // move current to its left child                  curr = curr.left;              }          }      }      return Klargest;  }     // Driver code public static void Main(String[] args)  {      // Your C# Code      /* Constructed binary tree is          4          / \      2 7      / \ / \      1 3 6 10 */        Node root = newNode(4);      root.left = newNode(2);      root.right = newNode(7);      root.left.left = newNode(1);      root.left.right = newNode(3);      root.right.left = newNode(6);      root.right.right = newNode(10);         Console.Write("Finding K-th largest Node in BST : " +                      KthLargestUsingMorrisTraversal(root, 2).data);  }  }    // This code has been contributed by 29AjayKumar

Output:

Finding K-th largest Node in BST : 7

Time Complexity : O(n)
Auxiliary Space : O(1)

My Personal Notes arrow_drop_up A technologist who loves exploring new technologies Passionate and interests in cloud computing and virtualization technologies Also a data nerd and a part time writer who loves writing

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.