Iterative Letter Combinations of a Phone Number

Given an integer array containing digits from [0, 9], the task is to print all possible letter combinations that the numbers could represent.
A mapping of digit to letters (just like on the telephone buttons) is being followed. Note that 0 and 1 do not map to any letters. All the mapping are shown in the image below:

Example:

Input: arr[] = {2, 3}
Output: ad ae af bd be bf cd ce cf



Input: arr[] = {9}
Output: w x y z

Approach: Now let us think how we would approach this problem without doing it in an iterative way. A recursive solution is intuitive and common. We keep adding each possible letter recursively and this will generate all the possible strings.

Let us think about how we can build an iterative solution using the recursive one. Recursion is possible through the use of a stack. So if we use a stack instead of a recursive function will that be an iterative solution? One could say so speaking technically but we then aren’t really doing anything different in terms of logic.

A Stack is a LIFO DS. Can we use another Data structure? What will be the difference if we use a FIFO DS? Let’s say a queue. Since BFS is done by queue and DFS by stack is there any difference between the two?

The difference between DFS and BFS is similar to this question. In DFS we will find each path possible in the tree one by one. It will perform all steps for a path first whereas BFS will build all paths together one step at a time.

So, a queue would work perfectly for this question. The only difference between the two algorithms using queue and stack will be the way in which they are formed. Stack will form all strings completely one by one whereas the queue will form all the strings together i.e. after x number of passes all the strings will have a length of x.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return a vector that contains
// all the generated letter combinations
vector<string> letterCombinationsUtil(const int number[],
                                      int n,
                                      const string table[])
{
    // To store the generated letter combinations
    vector<string> list;
  
    queue<string> q;
    q.push("");
  
    while (!q.empty()) {
        string s = q.front();
        q.pop();
  
        // If complete word is generated
        // push it in the list
        if (s.length() == n)
            list.push_back(s);
        else
  
            // Try all possible letters for current digit
            // in number[]
            for (auto letter : table[number[s.length()]])
                q.push(s + letter);
    }
  
    // Return the generated list
    return list;
}
  
// Function that creates the mapping and
// calls letterCombinationsUtil
void letterCombinations(const int number[], int n)
{
  
    // table[i] stores all characters that
    // corresponds to ith digit in phone
    string table[10]
        = { "", "", "abc", "def", "ghi", "jkl",
            "mno", "pqrs", "tuv", "wxyz" };
  
    vector<string> list
        = letterCombinationsUtil(number, n, table);
  
    // Print the contents of the vector
    for (auto word : list)
        cout << word << " ";
  
    return;
}
  
// Driver program
int main()
{
    int number[] = { 2, 3 };
    int n = sizeof(number) / sizeof(number[0]);
  
    letterCombinations(number, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.io.*;
import java.util.*;
  
class GFG 
{
    // Function to return a vector that contains 
    // all the generated letter combinations
    static ArrayList<String> letterCombinationsUtil(int[] number, int n, 
                                                            String[] table)
    {
            // To store the generated letter combinations
            ArrayList<String> list = new ArrayList<>();
              
            Queue<String> q = new LinkedList<>();
            q.add("");
          
            while(!q.isEmpty()) 
            {
                    String s = q.remove();
  
                    // If complete word is generated 
                    // push it in the list
                    if (s.length() == n)
                    list.add(s);
                    else 
                    {
                        String val = table[number[s.length()]];
                        for (int i = 0; i < val.length(); i++)
                        {
                            q.add(s + val.charAt(i));
                        }
                    
            }
            return list;
    
  
    // Function that creates the mapping and 
    // calls letterCombinationsUtil 
    static void letterCombinations(int[] number, int n)
    {
            // table[i] stores all characters that 
            // corresponds to ith digit in phone
            String[] table = { "", "", "abc", "def", "ghi", "jkl"
            "mno", "pqrs", "tuv", "wxyz" }; 
  
            ArrayList<String> list = 
                        letterCombinationsUtil(number, n, table);
              
            // Print the contents of the list
            for (int i = 0; i < list.size(); i++)
            {
                System.out.print(list.get(i) + " ");
            }
    }
  
    // Driver code
    public static void main(String args[])
    {
            int[] number = { 2, 3 };
            int n = number.length;
            letterCombinations(number, n); 
    }
  
// This code is contributed by rachana soma

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
from collections import deque
  
# Function to return a list that contains 
# all the generated letter combinations
def letterCombinationsUtil(number, n, table):
  
    list = []
    q = deque()
    q.append("")
  
    while len(q) != 0:
        s = q.pop()
  
        # If complete word is generated
        # push it in the list
        if len(s) == n:
            list.append(s)
        else:
  
            # Try all possible letters for current digit
            # in number[]
            for letter in table[number[len(s)]]:
                q.append(s + letter)
  
    # Return the generated list
    return list
  
  
# Function that creates the mapping and
# calls letterCombinationsUtil
def letterCombinations(number, n):
  
    # table[i] stores all characters that 
    # corresponds to ith digit in phone
    table = ["", "", "abc", "def", "ghi", "jkl",
            "mno", "pqrs", "tuv", "wxyz"]
  
    list = letterCombinationsUtil(number, n, table)
  
    s = ""
    for word in list:
        s += word + " "
  
    print(s)
    return
  
  
# Driver program
number = [2, 3]
n = len(number)
  
letterCombinations(number, n)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
using System.Collections.Generic; 
  
class GFG 
{
// Function to return a vector that contains 
// all the generated letter combinations
static List<String> letterCombinationsUtil(int[] number, 
                                           int n, String[] table)
{
    // To store the generated letter combinations
    List<String> list = new List<String>();
      
    Queue<String> q = new Queue<String>();
    q.Enqueue("");
  
    while(q.Count != 0) 
    {
        String s = q.Dequeue();
  
        // If complete word is generated 
        // push it in the list
        if (s.Length == n)
        list.Add(s);
        else
        {
            String val = table[number[s.Length]];
            for (int i = 0; i < val.Length; i++)
            {
                q.Enqueue(s + val[i]);
            }
        
    }
    return list;
  
// Function that creates the mapping and 
// calls letterCombinationsUtil 
static void letterCombinations(int[] number, int n)
{
    // table[i] stores all characters that 
    // corresponds to ith digit in phone
    String[] table = { "", "", "abc", "def", "ghi", "jkl"
                           "mno", "pqrs", "tuv", "wxyz" }; 
  
    List<String> list = 
         letterCombinationsUtil(number, n, table);
      
    // Print the contents of the list
    for (int i = 0; i < list.Count; i++)
    {
        Console.Write(list[i] + " ");
    }
}
  
// Driver code
public static void Main(String []args)
{
    int[] number = { 2, 3 };
    int n = number.Length;
    letterCombinations(number, n); 
}
  
// This code is contributed by Princi Singh

chevron_right


Output:

ad ae af bd be bf cd ce cf


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : rachana soma, princi singh