Number of positions where a letter can be inserted such that a string becomes palindrome

Given a string str, we need to find the no. of positions where a letter(lowercase) can be inserted so that string becomes a palindrome.

Examples:

Input : str = "abca"
Output : possible palindromic strings: 
         1) acbca (at position 2)
         2) abcba (at position 4)
         Hence, the output is 2.

Input : str = "aaa"
Output : possible palindromic strings:
         1) aaaa
         2) aaaa
         3) aaaa
         4) aaaa
         Hence, the output is 4. 



Naive Approach:This approach is to insert all 26 alphabets at every position possible i.e., N+1 positions and check at every position if this insertion makes it a palindrome and increase the count.

Efficient Approach:
First you have to observe that we have to make insertion only at the point when the character at that point violates the palindrome condition i.e., S[i] != S[N-i-1]. Now, there will be two cases based on the above fact:
Case I: What if the given string is already a palindrome
Then we can only insert at the position such that the insertion does not violate the palindrome.
1) If the length is even then we can always insert any letter in the middle.
2) If the length is odd then we can insert the letter which is in middle, to the left or right to it.
3) In both the cases we can insert the letter which is in middle(let it be ‘CH’), at positions equals to:
(no.of consecutive CH’s to the left of middle letter)*2.
Case II:If it is not a palindrome
As mentioned above we should start inserting at position where S[i] != S[N-1-i], So we increase the count and check for the cases if insertion at any other position makes it a palindrome.
1) If S[i]...S[N-i-2] is a palindrome, then we can insert* at any position before S[i] until S[K] != S[N-i-1], K in range [i-1, 0].(*letter = S[N-i-1])
2.)If S[i+1]...S[N-i-1] is a palindrome, then we can insert* at any position after S[n-i-1] until S[K] != S[i], K in range [N-i, N-1].(*letter = S[i])
In all the cases we keep increasing the count.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP code to find the no.of positions where a 
// letter can be inserted to make it a palindrome
#include <bits/stdc++.h>
using namespace std;
  
// Function to check if the string is palindrome
bool isPalindrome(string &s, int i, int j) 
{
    int p = j;
    for (int k = i; k <= p; k++) {
        if (s[k] != s[p])
            return false;
        p--;
    }
    return true;
}
  
int countWays(string &s)
{
    // to know the length of string
    int n = s.length();
    int count = 0;
  
    // if the given string is a palindrome(Case-I)
    if (isPalindrome(s, 0, n - 1)) 
    {
        // Sub-case-III) 
        for (int i = n / 2; i < n; i++)
        {
            if (s[i] == s[i + 1])
                count++;
            else
                break;
        }
        if (n % 2 == 0) // if the length is even
        {
            count++;
            count = 2 * count + 1; // sub-case-I
        } else
            count = 2 * count + 2; // sub-case-II
    } else {
        for (int i = 0; i < n / 2; i++) {
  
            // insertion point 
            if (s[i] != s[n - 1 - i]) 
            {
                int j = n - 1 - i;
  
                // Case-I
                if (isPalindrome(s, i, n - 2 - i)) 
                {
                    for (int k = i - 1; k >= 0; k--) {
                        if (s[k] != s[j])
                            break;
                        count++;
                    }
                    count++;
                }
  
                // Case-II
                if (isPalindrome(s, i + 1, n - 1 - i)) 
                {
                    for (int k = n - i; k < n; k++) {
                        if (s[k] != s[i])
                            break;
                        count++;
                    }
                    count++;
                }
                break;
            }
        }
    }
      
    return count;
}
  
// Driver code
int main()
{
    string s = "abca";
    cout << countWays(s) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to find the no.of positions where a
// letter can be inserted to make it a palindrome
  
import java.io.*;
  
class GFG {
      
    // Function to check if the string is palindrome
    static boolean isPalindrome(String s, int i, int j)
    {
        int p = j;
        for (int k = i; k <= p; k++) {
            if (s.charAt(k) != s.charAt(p))
                return false;
            p--;
        }
          
        return true;
    }
  
    static int countWays(String s)
    {
          
        // to know the length of string
        int n = s.length();
        int count = 0;
  
        // if the given string is a palindrome(Case-I)
        if (isPalindrome(s, 0, n - 1)) {
              
            // Sub-case-III)
            for (int i = n / 2; i < n; i++) {
                if (s.charAt(i) == s.charAt(i + 1))
                    count++;
                else
                    break;
            }
              
            if (n % 2 == 0) // if the length is even
            {
                count++;
                count = 2 * count + 1; // sub-case-I
            }
            else
                count = 2 * count + 2; // sub-case-II
        }
        else {
            for (int i = 0; i < n / 2; i++) {
  
                // insertion point
                if (s.charAt(i) != s.charAt(n - 1 - i)) {
                    int j = n - 1 - i;
  
                    // Case-I
                    if (isPalindrome(s, i, n - 2 - i)) {
                        for (int k = i - 1; k >= 0; k--) {
                            if (s.charAt(k) != s.charAt(j))
                                break;
                            count++;
                        }
                        count++;
                    }
  
                    // Case-II
                    if (isPalindrome(s, i + 1, n - 1 - i)) {
                        for (int k = n - i; k < n; k++) {
                            if (s.charAt(k) != s.charAt(i))
                                break;
                            count++;
                        }
                        count++;
                    }
                    break;
                }
            }
        }
  
        return count;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        String s = "abca";
        System.out.println(countWays(s));
    }
}
  
// This code is contributed by vt_m.

chevron_right


Python 3

# Python 3 code to find the no.of positions
# where a letter can be inserted to make it
# a palindrome

# Function to check if the string
# is palindrome
def isPalindrome(s, i, j):

p = j
for k in range(i, p + 1):
if (s[k] != s[p]):
return False
p -= 1

return True

def countWays(s):

# to know the length of string
n = len(s)
count = 0

# if the given string is a palindrome(Case-I)
if (isPalindrome(s, 0, n – 1)) :

# Sub-case-III)
for i in range(n // 2, n):

if (s[i] == s[i + 1]):
count += 1
else:
break

if (n % 2 == 0): # if the length is even
count += 1
count = 2 * count + 1 # sub-case-I
else:
count = 2 * count + 2 # sub-case-II
else :
for i in range(n // 2) :

# insertion point
if (s[i] != s[n – 1 – i]) :
j = n – 1 – i

# Case-I
if (isPalindrome(s, i, n – 2 – i)) :
for k in range(i – 1, -1, -1):
if (s[k] != s[j]):
break
count += 1

count += 1

# Case-II
if (isPalindrome(s, i + 1, n – 1 – i)) :
for k in range(n – i, n) :
if (s[k] != s[i]):
break
count += 1

count += 1

break

return count

# Driver code
if __name__ == “__main__”:

s = “abca”
print(countWays(s))

# This code is contributed by ita_c

C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to find the no. of positions
// where a letter can be inserted
// to make it a palindrome.
using System;
  
class GFG {
      
    // Function to check if the 
    // string is palindrome
    static bool isPalindrome(String s, int i, 
                                       int j)
    {
        int p = j;
        for (int k = i; k <= p; k++) 
        {
            if (s[k] != s[p])
                return false;
            p--;
        }
          
        return true;
    }
  
    static int countWays(String s)
    {
          
        // to know the length of string
        int n = s.Length;
        int count = 0;
  
        // if the given string is
        // a palindrome(Case-I)
        if (isPalindrome(s, 0, n - 1)) {
              
            // Sub-case-III)
            for (int i = n / 2; i < n; i++) {
                if (s[i] == s[i + 1])
                    count++;
                else
                    break;
            }
              
            // if the length is even
            if (n % 2 == 0) 
            {
                count++;
                  
                // sub-case-I
                count = 2 * count + 1; 
            }
            else
              
                // sub-case-II
                count = 2 * count + 2;
        }
        else {
            for (int i = 0; i < n / 2; i++) {
  
                // insertion point
                if (s[i] != s[n - 1 - i]) {
                    int j = n - 1 - i;
  
                    // Case-I
                    if (isPalindrome(s, i, n - 2 - i)) {
                        for (int k = i - 1; k >= 0; k--) {
                            if (s[k] != s[j])
                                break;
                            count++;
                        }
                        count++;
                    }
  
                    // Case-II
                    if (isPalindrome(s, i + 1, n - 1 - i)) {
                        for (int k = n - i; k < n; k++) {
                            if (s[k] != s[i])
                                break;
                            count++;
                        }
                        count++;
                    }
                    break;
                }
            }
        }
  
        return count;
    }
  
    // Driver code
    public static void Main()
    {
        String s = "abca";
        Console.Write(countWays(s));
    }
}
  
// This code is contributed by nitin mittal

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP code to find the no. of
// positions where a letter can 
// be inserted to make it a palindrome
  
// Function to check if the 
// string is palindrome
function isPalindrome($s, $i, $j
{
    $p = $j;
    for ($k = $i; $k <= $p; $k++)
    {
        if ($s[$k] != $s[$p])
            return false;
        $p--;
    }
    return true;
}
  
function countWays($s)
{
      
    // to know the length of string
    $n = strlen($s);
    $count = 0;
  
    // if the given string is 
    // a palindrome(Case-I)
    if (isPalindrome($s, 0, $n - 1)) 
    {
          
        // Sub-case-III) 
        for ($i = $n / 2; $i < $n; $i++)
        {
            if ($s[$i] == $s[$i + 1])
                $count++;
            else
                break;
        }
          
        // if the length is even
        if ($n % 2 == 0) 
        {
            $count++;
              
            // sub-case-I
            $count = 2 * $count + 1; 
        
        else
          
            // sub-case-II
            $count = 2 * $count + 2; 
    
    else
    {
        for ($i = 0; $i < $n / 2; $i++) 
        {
  
            // insertion point 
            if ($s[$i] != $s[$n - 1 - $i]) 
            {
                $j = $n - 1 - $i;
  
                // Case-I
                if (isPalindrome($s, $i, $n - 2 - $i)) 
                {
                    for ($k = $i - 1; $k >= 0; $k--)
                    {
                        if ($s[$k] != $s[$j])
                            break;
                        $count++;
                    }
                    $count++;
                }
  
                // Case-II
                if (isPalindrome($s, $i + 1,$n - 1 - $i)) 
                {
                    for ($k = $n - $i; $k < $n; $k++) 
                    {
                        if ($s[$k] != $s[$i])
                            break;
                        $count++;
                    }
                    $count++;
                }
                break;
            }
        }
    }
      
    return $count;
}
  
// Driver code
$s = "abca";
echo countWays($s) ;
  
// This code is contributed by nitin mittal
?>

chevron_right



Output:

2

This article is contributed by Harsha Mogali. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : nitin mittal, ChitraNayal



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.