Given length of wall w and shelves of two lengths m and n, find the number of each type of shelf to be used and the remaining empty space in the optimal solution so that the empty space is minimum. The larger of the two shelves is cheaper so it is preferred. However cost is secondary and first priority is to minimize empty space on wall.
Examples:
Input : w = 24 m = 3 n = 5
Output : 3 3 0
We use three units of both shelves
and 0 space is left.
3 * 3 + 3 * 5 = 24
So empty space = 24 - 24 = 0
Another solution could have been 8 0 0
but since the larger shelf of length 5
is cheaper the former will be the answer.
Input : w = 29 m = 3 n = 9
Output : 0 3 2
0 * 3 + 3 * 9 = 27
29 - 27 = 2
Input : w = 24 m = 4 n = 7
Output : 6 0 0
6 * 4 + 0 * 7 = 24
24 - 24 = 0
A simple and efficient approach will be to try all possible combinations of shelves that fit within the length of the wall.
To implement this approach along with the constraint that larger shelf costs less than the smaller one, starting from 0, we increase no of larger type shelves till they can be fit. For each case we calculate the empty space and finally store that value which minimizes the empty space. if empty space is same in two cases we prefer the one with more no of larger shelves.
Below is its implementation.
C++
#include <bits/stdc++.h>
using namespace std;
void minSpacePreferLarge( int wall, int m, int n)
{
int num_m = 0, num_n = 0, min_empty = wall;
int p = wall/m, q = 0, rem=wall%m;
num_m=p;
num_n=q;
min_empty=rem;
while (wall >= n) {
q += 1;
wall = wall - n;
p = wall / m;
rem = wall % m;
if (rem <= min_empty) {
num_m = p;
num_n = q;
min_empty = rem;
}
}
cout << num_m << " " << num_n << " "
<< min_empty << endl;
}
int main()
{
int wall = 29, m = 3, n = 9;
minSpacePreferLarge(wall, m, n);
wall = 76, m = 1, n = 10;
minSpacePreferLarge(wall, m, n);
return 0;
}
|
C
#include <stdio.h>
void minSpacePreferLarge( int wall, int m, int n)
{
int num_m = 0, num_n = 0, min_empty = wall;
int p = wall / m, q = 0, rem = wall % m;
num_m = p;
num_n = q;
min_empty = rem;
while (wall >= n) {
q += 1;
wall = wall - n;
p = wall / m;
rem = wall % m;
if (rem <= min_empty) {
num_m = p;
num_n = q;
min_empty = rem;
}
}
printf ( "%d %d %d\n" , num_m, num_n, min_empty);
}
int main()
{
int wall = 29, m = 3, n = 9;
minSpacePreferLarge(wall, m, n);
wall = 76, m = 1, n = 10;
minSpacePreferLarge(wall, m, n);
return 0;
}
|
Java
public class GFG {
static void minSpacePreferLarge( int wall, int m, int n)
{
int num_m = 0 , num_n = 0 , min_empty = wall;
int p = wall/m, q = 0 , rem=wall%m;
num_m=p;
num_n=q;
min_empty=rem;
while (wall >= n) {
q += 1 ;
wall = wall - n;
p = wall / m;
rem = wall % m;
if (rem <= min_empty) {
num_m = p;
num_n = q;
min_empty = rem;
}
q += 1 ;
wall = wall - n;
}
System.out.println(num_m + " " + num_n + " " + min_empty);
}
public static void main(String[] args)
{
int wall = 24 , m = 3 , n = 5 ;
minSpacePreferLarge(wall, m, n);
wall = 24 ;
m = 4 ;
n = 7 ;
minSpacePreferLarge(wall, m, n);
}
}
|
Python3
def minSpacePreferLarge(w, m, n):
num_m = 0
num_n = 0
rem = w
p = w / / m
q = 0
rem = w % m;
num_m = p;
num_n = q;
min_empty = rem;
while (w > = n):
q + = 1 ;
w - = n;
p = w / / m
r = w % m
if (r < = rem):
num_m = p
num_n = q
rem = r
q + = 1
w - = n
print ( str ( int (num_m)) + " " + str (num_n) + " " + str (rem))
w = 24
m = 3
n = 5
minSpacePreferLarge(w, m, n)
w = 24
m = 4
n = 7
minSpacePreferLarge(w, m, n)
|
C#
using System;
class GFG {
static void minSpacePreferLarge( int wall, int m, int n)
{
int num_m = 0, num_n = 0, min_empty = wall;
int p = wall/m, q = 0, rem=wall%m;
num_m=p;
num_n=q;
min_empty=rem;
while (wall >= n) {
q += 1;
wall = wall - n;
p = wall / m;
rem = wall % m;
if (rem <= min_empty) {
num_m = p;
num_n = q;
min_empty = rem;
}
q += 1;
wall = wall - n;
}
Console.WriteLine(num_m + " " + num_n + " " + min_empty);
}
static public void Main()
{
int wall = 24, m = 3, n = 5;
minSpacePreferLarge(wall, m, n);
wall = 24;
m = 4;
n = 7;
minSpacePreferLarge(wall, m, n);
}
}
|
PHP
<?php
function minSpacePreferLarge( $wall , $m , $n )
{
$num_m = 0;
$num_n = 0;
$min_empty = $wall ;
$p = $wall / $m
$q = 0
$rem = $wall % $m ;
$num_m = $p ;
$num_n = $q ;
$min_empty = $rem ;
while ( $wall >= $n )
{
$q += 1;
$wall = $wall - $n ;
$p = $wall / $m ;
$rem = $wall % $m ;
if ( $rem <= $min_empty )
{
$num_m = $p ;
$num_n = $q ;
$min_empty = $rem ;
}
$q += 1;
$wall = $wall - $n ;
}
echo $num_m , " " , $num_n , " " ,
$min_empty , "\n" ;
}
$wall = 24;
$m = 3;
$n = 5;
minSpacePreferLarge( $wall , $m , $n );
$wall = 24;
$m = 4;
$n = 7;
minSpacePreferLarge( $wall , $m , $n );
?>
|
Javascript
<script>
function minSpacePreferLarge(wall, m, n)
{
let num_m = 0, num_n = 0, min_empty = wall;
let p = parseInt(wall/m, 10), q = 0, rem=wall%m;
num_m=p;
num_n=q;
min_empty=rem;
while (wall >= n) {
q += 1;
wall = wall - n;
p = parseInt(wall / m, 10);
rem = wall % m;
if (rem <= min_empty) {
num_m = p;
num_n = q;
min_empty = rem;
}
}
document.write(num_m + " " + num_n + " " + min_empty + "</br>" );
}
let wall = 29, m = 3, n = 9;
minSpacePreferLarge(wall, m, n);
wall = 76, m = 1, n = 10;
minSpacePreferLarge(wall, m, n);
</script>
|
Time Complexity: O(w/max(n,m))
Space Complexity: O(1)
References: Sumologic Internship question
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
11 Jun, 2022
Like Article
Save Article