We introduced graph coloring and applications in previous post. As discussed in the previous post, graph coloring is widely used. Unfortunately, there is no efficient algorithm available for coloring a graph with minimum number of colors as the problem is a known NP Complete problem. There are approximate algorithms to solve the problem though. Following is the basic Greedy Algorithm to assign colors. It doesn’t guarantee to use minimum colors, but it guarantees an upper bound on the number of colors. The basic algorithm never uses more than d+1 colors where d is the maximum degree of a vertex in the given graph.
Graph Coloring Using Greedy Algorithm:
- Color first vertex with first color.
- Do following for remaining V-1 vertices.
- Consider the currently picked vertex and color it with the lowest numbered color that has not been used on any previously colored vertices adjacent to it. If all previously used colors appear on vertices adjacent to v, assign a new color to it.
Below is the implementation of the above Greedy Algorithm.
C++
#include <iostream>
#include <list>
using namespace std;
class Graph
{
int V;
list< int > *adj;
public :
Graph( int V) { this ->V = V; adj = new list< int >[V]; }
~Graph() { delete [] adj; }
void addEdge( int v, int w);
void greedyColoring();
};
void Graph::addEdge( int v, int w)
{
adj[v].push_back(w);
adj[w].push_back(v);
}
void Graph::greedyColoring()
{
int result[V];
result[0] = 0;
for ( int u = 1; u < V; u++)
result[u] = -1;
bool available[V];
for ( int cr = 0; cr < V; cr++)
available[cr] = false ;
for ( int u = 1; u < V; u++)
{
list< int >::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
if (result[*i] != -1)
available[result[*i]] = true ;
int cr;
for (cr = 0; cr < V; cr++)
if (available[cr] == false )
break ;
result[u] = cr;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
if (result[*i] != -1)
available[result[*i]] = false ;
}
for ( int u = 0; u < V; u++)
cout << "Vertex " << u << " ---> Color "
<< result[u] << endl;
}
int main()
{
Graph g1(5);
g1.addEdge(0, 1);
g1.addEdge(0, 2);
g1.addEdge(1, 2);
g1.addEdge(1, 3);
g1.addEdge(2, 3);
g1.addEdge(3, 4);
cout << "Coloring of graph 1 \n" ;
g1.greedyColoring();
Graph g2(5);
g2.addEdge(0, 1);
g2.addEdge(0, 2);
g2.addEdge(1, 2);
g2.addEdge(1, 4);
g2.addEdge(2, 4);
g2.addEdge(4, 3);
cout << "\nColoring of graph 2 \n" ;
g2.greedyColoring();
return 0;
}
|
Java
import java.io.*;
import java.util.*;
import java.util.LinkedList;
class Graph
{
private int V;
private LinkedList<Integer> adj[];
Graph( int v)
{
V = v;
adj = new LinkedList[v];
for ( int i= 0 ; i<v; ++i)
adj[i] = new LinkedList();
}
void addEdge( int v, int w)
{
adj[v].add(w);
adj[w].add(v);
}
void greedyColoring()
{
int result[] = new int [V];
Arrays.fill(result, - 1 );
result[ 0 ] = 0 ;
boolean available[] = new boolean [V];
Arrays.fill(available, true );
for ( int u = 1 ; u < V; u++)
{
Iterator<Integer> it = adj[u].iterator() ;
while (it.hasNext())
{
int i = it.next();
if (result[i] != - 1 )
available[result[i]] = false ;
}
int cr;
for (cr = 0 ; cr < V; cr++){
if (available[cr])
break ;
}
result[u] = cr;
Arrays.fill(available, true );
}
for ( int u = 0 ; u < V; u++)
System.out.println( "Vertex " + u + " ---> Color "
+ result[u]);
}
public static void main(String args[])
{
Graph g1 = new Graph( 5 );
g1.addEdge( 0 , 1 );
g1.addEdge( 0 , 2 );
g1.addEdge( 1 , 2 );
g1.addEdge( 1 , 3 );
g1.addEdge( 2 , 3 );
g1.addEdge( 3 , 4 );
System.out.println( "Coloring of graph 1" );
g1.greedyColoring();
System.out.println();
Graph g2 = new Graph( 5 );
g2.addEdge( 0 , 1 );
g2.addEdge( 0 , 2 );
g2.addEdge( 1 , 2 );
g2.addEdge( 1 , 4 );
g2.addEdge( 2 , 4 );
g2.addEdge( 4 , 3 );
System.out.println( "Coloring of graph 2 " );
g2.greedyColoring();
}
}
|
Python3
def addEdge(adj, v, w):
adj[v].append(w)
adj[w].append(v)
return adj
def greedyColoring(adj, V):
result = [ - 1 ] * V
result[ 0 ] = 0 ;
available = [ False ] * V
for u in range ( 1 , V):
for i in adj[u]:
if (result[i] ! = - 1 ):
available[result[i]] = True
cr = 0
while cr < V:
if (available[cr] = = False ):
break
cr + = 1
result[u] = cr
for i in adj[u]:
if (result[i] ! = - 1 ):
available[result[i]] = False
for u in range (V):
print ( "Vertex" , u, " ---> Color" , result[u])
if __name__ = = '__main__' :
g1 = [[] for i in range ( 5 )]
g1 = addEdge(g1, 0 , 1 )
g1 = addEdge(g1, 0 , 2 )
g1 = addEdge(g1, 1 , 2 )
g1 = addEdge(g1, 1 , 3 )
g1 = addEdge(g1, 2 , 3 )
g1 = addEdge(g1, 3 , 4 )
print ( "Coloring of graph 1 " )
greedyColoring(g1, 5 )
g2 = [[] for i in range ( 5 )]
g2 = addEdge(g2, 0 , 1 )
g2 = addEdge(g2, 0 , 2 )
g2 = addEdge(g2, 1 , 2 )
g2 = addEdge(g2, 1 , 4 )
g2 = addEdge(g2, 2 , 4 )
g2 = addEdge(g2, 4 , 3 )
print ( "\nColoring of graph 2" )
greedyColoring(g2, 5 )
|
C#
using System;
using System.Collections.Generic;
class Graph
{
private int V;
private List< int >[] adj;
public Graph( int v)
{
V = v;
adj = new List< int >[v];
for ( int i=0; i<v; ++i)
adj[i] = new List< int >();
}
public void addEdge( int v, int w)
{
adj[v].Add(w);
adj[w].Add(v);
}
public void greedyColoring()
{
int [] result = new int [V];
for ( int i = 0; i < V; i++)
{
result[i] = -1;
}
result[0] = 0;
bool [] available = new bool [V];
for ( int i = 0; i < V; i++)
{
available[i] = true ;
}
for ( int u = 1; u < V; u++)
{
foreach ( int i in adj[u])
{
if (result[i] != -1)
available[result[i]] = false ;
}
int cr;
for (cr = 0; cr < V; cr++)
{
if (available[cr])
break ;
}
result[u] = cr;
for ( int i = 0; i < V; i++)
{
available[i] = true ;
}
}
for ( int u = 0; u < V; u++)
Console.WriteLine( "Vertex " + u + " ---> Color " + result[u]);
}
public static void Main( string [] args)
{
Graph g1 = new Graph(5);
g1.addEdge(0, 1);
g1.addEdge(0, 2);
g1.addEdge(1, 2);
g1.addEdge(1, 3);
g1.addEdge(2, 3);
g1.addEdge(3, 4);
Console.WriteLine( "Coloring of graph 1" );
g1.greedyColoring();
Graph g2 = new Graph(5);
g2.addEdge(0, 1);
g2.addEdge(0, 2);
g2.addEdge(1, 2);
g2.addEdge(1, 4);
g2.addEdge(2, 4);
g2.addEdge(4, 3);
Console.WriteLine( "\nColoring of graph 2" );
g2.greedyColoring();
}
}
|
Javascript
<script>
class Graph{
constructor(v)
{
this .V = v;
this .adj = new Array(v);
for (let i = 0; i < v; ++i)
this .adj[i] = [];
this .Time = 0;
}
addEdge(v,w)
{
this .adj[v].push(w);
this .adj[w].push(v);
}
greedyColoring()
{
let result = new Array( this .V);
for (let i = 0; i < this .V; i++)
result[i] = -1;
result[0] = 0;
let available = new Array( this .V);
for (let i = 0; i < this .V; i++)
available[i] = true ;
for (let u = 1; u < this .V; u++)
{
for (let it of this .adj[u])
{
let i = it;
if (result[i] != -1)
available[result[i]] = false ;
}
let cr;
for (cr = 0; cr < this .V; cr++)
{
if (available[cr])
break ;
}
result[u] = cr;
for (let i = 0; i < this .V; i++)
available[i] = true ;
}
for (let u = 0; u < this .V; u++)
document.write( "Vertex " + u + " ---> Color " +
result[u] + "<br>" );
}
}
let g1 = new Graph(5);
g1.addEdge(0, 1);
g1.addEdge(0, 2);
g1.addEdge(1, 2);
g1.addEdge(1, 3);
g1.addEdge(2, 3);
g1.addEdge(3, 4);
document.write( "Coloring of graph 1<br>" );
g1.greedyColoring();
document.write( "<br>" );
let g2 = new Graph(5);
g2.addEdge(0, 1);
g2.addEdge(0, 2);
g2.addEdge(1, 2);
g2.addEdge(1, 4);
g2.addEdge(2, 4);
g2.addEdge(4, 3);
document.write( "Coloring of graph 2<br> " );
g2.greedyColoring();
</script>
|
Output:
Coloring of graph 1
Vertex 0 ---> Color 0
Vertex 1 ---> Color 1
Vertex 2 ---> Color 2
Vertex 3 ---> Color 0
Vertex 4 ---> Color 1
Coloring of graph 2
Vertex 0 ---> Color 0
Vertex 1 ---> Color 1
Vertex 2 ---> Color 2
Vertex 3 ---> Color 0
Vertex 4 ---> Color 3
Time Complexity: O(V^2 + E), in worst case.
Auxiliary Space: O(1), as we are not using any extra space.
Analysis of Graph Coloring Using Greedy Algorithm:
The above algorithm doesn’t always use minimum number of colors. Also, the number of colors used sometime depend on the order in which vertices are processed. For example, consider the following two graphs. Note that in graph on right side, vertices 3 and 4 are swapped. If we consider the vertices 0, 1, 2, 3, 4 in left graph, we can color the graph using 3 colors. But if we consider the vertices 0, 1, 2, 3, 4 in right graph, we need 4 colors.

So the order in which the vertices are picked is important. Many people have suggested different ways to find an ordering that work better than the basic algorithm on average. The most common is Welsh–Powell Algorithm which considers vertices in descending order of degrees.
How does the basic algorithm guarantee an upper bound of d+1?
Here d is the maximum degree in the given graph. Since d is maximum degree, a vertex cannot be attached to more than d vertices. When we color a vertex, at most d colors could have already been used by its adjacent. To color this vertex, we need to pick the smallest numbered color that is not used by the adjacent vertices. If colors are numbered like 1, 2, …., then the value of such smallest number must be between 1 to d+1 (Note that d numbers are already picked by adjacent vertices).
This can also be proved using induction. See this video lecture for proof.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
10 Oct, 2023
Like Article
Save Article