Skip to content
Related Articles

Related Articles

Regression Analysis and the Best Fitting Line using C++

Improve Article
Save Article
Like Article
  • Last Updated : 11 Apr, 2022

This article discusses the basics of linear regression and its implementation in the C++ programming language. Regression analysis is the common analysis method that is used by data scientists for the prediction of values corresponding to some input data. 

The simple regression analysis method is linear regression. Linear regression is a statistical method for modeling relationships between a dependent variable with a given set of independent variables. We are going to implement the same in C++.

The input data set generally comes in a .csv (comma-separated values) file which we will copy from that file and put in a .txt file as an input file for our C++ program. To take input from a file create an input.txt named file in the same directory as the program file and put the data inside that file such that the first line has the value of N i.e the number of entries in that dataset.

Implementation :

C++




// C++ program to implement
// the above approach
#include <iostream>
#include <stdio.h>
#include <vector>
using namespace std;
class regression {
    // Dynamic array which is going
    // to contain all (i-th x)
    vector<float> x;
 
    // Dynamic array which is going
    // to contain all (i-th y)
    vector<float> y;
 
    // Store the coefficient/slope in
    // the best fitting line
    float coeff;
 
    // Store the constant term in
    // the best fitting line
    float constTerm;
 
    // Contains sum of product of
    // all (i-th x) and (i-th y)
    float sum_xy;
 
    // Contains sum of all (i-th x)
    float sum_x;
 
    // Contains sum of all (i-th y)
    float sum_y;
 
    // Contains sum of square of
    // all (i-th x)
    float sum_x_square;
 
    // Contains sum of square of
    // all (i-th y)
    float sum_y_square;
 
public:
    // Constructor to provide the default
    // values to all the terms in the
    // object of class regression
    regression()
    {
        coeff = 0;
        constTerm = 0;
        sum_y = 0;
        sum_y_square = 0;
        sum_x_square = 0;
        sum_x = 0;
        sum_xy = 0;
    }
 
    // Function that calculate the coefficient/
    // slope of the best fitting line
    void calculateCoefficient()
    {
        float N = x.size();
        float numerator
            = (N * sum_xy - sum_x * sum_y);
        float denominator
            = (N * sum_x_square - sum_x * sum_x);
        coeff = numerator / denominator;
    }
 
    // Member function that will calculate
    // the constant term of the best
    // fitting line
    void calculateConstantTerm()
    {
        float N = x.size();
        float numerator
            = (sum_y * sum_x_square - sum_x * sum_xy);
        float denominator
            = (N * sum_x_square - sum_x * sum_x);
        constTerm = numerator / denominator;
    }
 
    // Function that return the number
    // of entries (xi, yi) in the data set
    int sizeOfData()
    {
        return x.size();
    }
 
    // Function that return the coeffecient/
    // slope of the best fitting line
    float coefficient()
    {
        if (coeff == 0)
            calculateCoefficient();
        return coeff;
    }
 
    // Function that return the constant
    // term of the best fitting line
    float constant()
    {
        if (constTerm == 0)
            calculateConstantTerm();
        return constTerm;
    }
 
    // Function that print the best
    // fitting line
    void PrintBestFittingLine()
    {
        if (coeff == 0 && constTerm == 0) {
            calculateCoefficient();
            calculateConstantTerm();
        }
        cout << "The best fitting line is y = "
             << coeff << "x + " << constTerm << endl;
    }
 
    // Function to take input from the dataset
    void takeInput(int n)
    {
        for (int i = 0; i < n; i++) {
            // In a csv file all the values of
            // xi and yi are separated by commas
            char comma;
            float xi;
            float yi;
            cin >> xi >> comma >> yi;
            sum_xy += xi * yi;
            sum_x += xi;
            sum_y += yi;
            sum_x_square += xi * xi;
            sum_y_square += yi * yi;
            x.push_back(xi);
            y.push_back(yi);
        }
    }
 
    // Function to show the data set
    showData()
    {
        for (int i = 0; i < 62; i++) {
            printf("_");
        }
        printf("\n\n");
        printf("|%15s%5s %15s%5s%20s\n",
               "X", "", "Y", "", "|");
 
        for (int i = 0; i < x.size(); i++) {
            printf("|%20f %20f%20s\n",
                   x[i], y[i], "|");
        }
 
        for (int i = 0; i < 62; i++) {
            printf("_");
        }
        printf("\n");
    }
 
    // Function to predict the value
    // correspondng to some input
    float predict(float x)
    {
        return coeff * x + constTerm;
    }
 
    // Function that returns overall
    // sum of square of errors
    float errorSquare()
    {
        float ans = 0;
        for (int i = 0;
             i < x.size(); i++) {
            ans += ((predict(x[i]) - y[i])
                    * (predict(x[i]) - y[i]));
        }
        return ans;
    }
 
    // Functions that return the error
    // i.e the difference between the
    // actual value and value predicted
    // by our model
    float errorIn(float num)
    {
        for (int i = 0;
             i < x.size(); i++) {
            if (num == x[i]) {
                return (y[i] - predict(x[i]));
            }
        }
        return 0;
    }
};
 
// Driver code
int main()
{
    freopen("input.txt", "r",
            stdin);
    regression reg;
 
    // Number of pairs of (xi, yi)
    // in the dataset
    int n;
    cin >> n;
 
    // Calling function takeInput to
    // take input of n pairs
    reg.takeInput(n);
 
    // Printing the best fitting line
    reg.PrintBestFittingLine();
    cout << "Predicted value at 2060 = "
         << reg.predict(2060) << endl;
    cout << "The errorSquared  = "
         << reg.errorSquare() << endl;
    cout << "Error in 2050 = "
         << reg.errorIn(2050) << endl;
}

Content of input.txt file is:

84
1714, 2.4
1664, 2.52
1760, 2.54
1685, 2.74
1693, 2.83
1670, 2.91
1764, 3
1764, 3
1792, 3.01
1850, 3.01
1735, 3.02
1775, 3.07
1735, 3.08
1712, 3.08
1773, 3.12
1872, 3.17
1755, 3.17
1674, 3.17
1842, 3.17
1786, 3.19
1761, 3.19
1722, 3.19
1663, 3.2
1687, 3.21
1974, 3.24
1826, 3.28
1787, 3.28
1821, 3.28
2020, 3.28
1794, 3.28
1769, 3.28
1934, 3.28
1775, 3.29
1855, 3.29
1880, 3.29
1849, 3.31
1808, 3.32
1954, 3.34
1777, 3.37
1831, 3.37
1865, 3.37
1850, 3.38
1966, 3.38
1702, 3.39
1990, 3.39
1925, 3.4
1824, 3.4
1956, 3.4
1857, 3.41
1979, 3.41
1802, 3.41
1855, 3.42
1907, 3.42
1634, 3.42
1879, 3.44
1887, 3.47
1730, 3.47
1953, 3.47
1781, 3.47
1891, 3.48
1964, 3.49
1808, 3.49
1893, 3.5
2041, 3.51
1893, 3.51
1832, 3.52
1850, 3.52
1934, 3.54
1861, 3.58
1931, 3.58
1933, 3.59
1778, 3.59
1975, 3.6
1934, 3.6
2021, 3.61
2015, 3.62
1997, 3.64
2020, 3.65
1843, 3.71
1936, 3.71
1810, 3.71
1987, 3.73
1962, 3.76
2050, 3.81

Output:

The best fitting line is y = 0.00165565x + 0.27511
Predicted value at 2060 = 3.68575
The errorSquared  = 3.63727
Error in 2050 = 0.140807

Explanation:
1. If all the data items into a graph are plotted then we will get several points in the graph, now the best fitting line is a line that is closest to every point on the graph. 

Graphical representation of data

Graphical representation of data

2. Next task is to find the best fitting line. As any straight line can be represented in the form of y = ax + b, where a is the coefficient or slope of the line and b is the constant term.
3. So to find the best fitting line calculate the values of a and b. There is a straightforward formula for calculating the values of a and b which looks like the below ones-

Formula for a and b

Formulae for a and b

4. After the value of a and b is calculated one can represent the line on the graph as:

The best fitting line

The best-fitting line


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!