Given a value V, if we want to make a change for V Rs, and we have an infinite supply of each of the denominations in Indian currency, i.e., we have an infinite supply of { 1, 2, 5, 10, 20, 50, 100, 500, 1000} valued coins/notes, what is the minimum number of coins and/or notes needed to make the change?
Examples:
Input: V = 70 Output: 2 We need a 50 Rs note and a 20 Rs note. Input: V = 121 Output: 3 We need a 100 Rs note, a 20 Rs note and a 1 Rs coin.
Solution: Greedy Approach.
Approach: A common intuition would be to take coins with greater value first. This can reduce the total number of coins needed. Start from the largest possible denomination and keep adding denominations while the remaining value is greater than 0.
Algorithm:
- Sort the array of coins in decreasing order.
- Initialize result as empty.
- Find the largest denomination that is smaller than current amount.
- Add found denomination to result. Subtract value of found denomination from amount.
- If amount becomes 0, then print result.
- Else repeat steps 3 and 4 for new value of V.
C++
// C++ program to find minimum // number of denominations #include <bits/stdc++.h> using namespace std; // All denominations of Indian Currency int deno[] = { 1, 2, 5, 10, 20, 50, 100, 500, 1000 }; int n = sizeof (deno) / sizeof (deno[0]); void findMin( int V) { sort(deno, deno + n); // Initialize result vector< int > ans; // Traverse through all denomination for ( int i = n - 1; i >= 0; i--) { // Find denominations while (V >= deno[i]) { V -= deno[i]; ans.push_back(deno[i]); } } // Print result for ( int i = 0; i < ans.size(); i++) cout << ans[i] << " " ; } // Driver program int main() { int n = 93; cout << "Following is minimal" << " number of change for " << n << ": " ; findMin(n); return 0; } |
C
// C program to find minimum // number of denominations #include <stdio.h> #define COINS 9 #define MAX 20 // All denominations of Indian Currency int coins[COINS] = { 1, 2, 5, 10, 20, 50, 100, 200, 2000 }; void findMin( int cost) { int coinList[MAX] = { 0 }; int i, k = 0; for (i = COINS - 1; i >= 0; i--) { while (cost >= coins[i]) { cost -= coins[i]; // Add coin in the list coinList[k++] = coins[i]; } } for (i = 0; i < k; i++) { // Print printf ( "%d " , coinList[i]); } return ; } int main( void ) { // input value int n = 93; printf ( "Following is minimal number" "of change for %d: " , n); findMin(n); return 0; } // Code by Munish Bhardwaj |
Java
// Java program to find minimum // number of denominations import java.util.Vector; class GFG { // All denominations of Indian Currency static int deno[] = { 1 , 2 , 5 , 10 , 20 , 50 , 100 , 500 , 1000 }; static int n = deno.length; static void findMin( int V) { // Initialize result Vector<Integer> ans = new Vector<>(); // Traverse through all denomination for ( int i = n - 1 ; i >= 0 ; i--) { // Find denominations while (V >= deno[i]) { V -= deno[i]; ans.add(deno[i]); } } // Print result for ( int i = 0 ; i < ans.size(); i++) { System.out.print( " " + ans.elementAt(i)); } } // Driver code public static void main(String[] args) { int n = 93 ; System.out.print( "Following is minimal number " + "of change for " + n + ": " ); findMin(n); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program to find minimum # number of denominations def findMin(V): # All denominations of Indian Currency deno = [ 1 , 2 , 5 , 10 , 20 , 50 , 100 , 500 , 1000 ] n = len (deno) # Initialize Result ans = [] # Traverse through all denomination i = n - 1 while (i > = 0 ): # Find denominations while (V > = deno[i]): V - = deno[i] ans.append(deno[i]) i - = 1 # Print result for i in range ( len (ans)): print (ans[i], end = " " ) # Driver Code if __name__ = = '__main__' : n = 93 print ( "Following is minimal number" , "of change for" , n, ": " , end = "") findMin(n) # This code is contributed by # Surendra_Gangwar |
C#
// C# program to find minimum // number of denominations using System; using System.Collections.Generic; class GFG{ // All denominations of Indian Currency static int []deno = { 1, 2, 5, 10, 20, 50, 100, 500, 1000 }; static int n = deno.Length; static void findMin( int V) { // Initialize result List< int > ans = new List< int >(); // Traverse through all denomination for ( int i = n - 1; i >= 0; i--) { // Find denominations while (V >= deno[i]) { V -= deno[i]; ans.Add(deno[i]); } } // Print result for ( int i = 0; i < ans.Count; i++) { Console.Write( " " + ans[i]); } } // Driver code public static void Main(String[] args) { int n = 93; Console.Write( "Following is minimal number " + "of change for " + n + ": " ); findMin(n); } } // This code is contributed by gauravrajput1 |
Output:
Following is minimal number of change for 93: 50 20 20 2 1
Complexity Analysis:
- Time Complexity: O(V).
- Auxiliary Space: O(1) as no additional space is used.
Note: The above approach may not work for all denominations. For example, it doesn’t work for denominations {9, 6, 5, 1} and V = 11. The above approach would print 9, 1 and 1. But we can use 2 denominations 5 and 6.
For general input, below dynamic programming approach can be used:
Find minimum number of coins that make a given value
Thanks to Utkarsh for providing the above solution here.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.