Boruvka’s algorithm | Greedy Algo-9
We have discussed the following topics on Minimum Spanning Tree.
Applications of Minimum Spanning Tree Problem
Kruskal’s Minimum Spanning Tree Algorithm
Prim’s Minimum Spanning Tree Algorithm
In this post, Boruvka’s algorithm is discussed. Like Prim’s and Kruskal’s, Boruvka’s algorithm is also a Greedy algorithm. Below is a complete algorithm.
1) Input is a connected, weighted and un-directed graph. 2) Initialize all vertices as individual components (or sets). 3) Initialize MST as empty. 4) While there are more than one components, do following for each component. a) Find the closest weight edge that connects this component to any other component. b) Add this closest edge to MST if not already added. 5) Return MST.
Below is the idea behind the above algorithm (The idea is the same as Prim’s MST algorithm).
A spanning tree means all vertices must be connected. So the two disjoint subsets (discussed above) of vertices must be connected to make a Spanning Tree. And they must be connected with the minimum weight edge to make it a Minimum Spanning Tree.
Let us understand the algorithm in the below example.
Initially, MST is empty. Every vertex is single component as highlighted in blue color in the below diagram.
For every component, find the cheapest edge that connects it to some other component.
Component Cheapest Edge that connects it to some other component {0} 0-1 {1} 0-1 {2} 2-8 {3} 2-3 {4} 3-4 {5} 5-6 {6} 6-7 {7} 6-7 {8} 2-8
The cheapest edges are highlighted with green color. Now MST becomes {0-1, 2-8, 2-3, 3-4, 5-6, 6-7}.
After above step, components are {{0,1}, {2,3,4,8}, {5,6,7}}. The components are encircled with blue color.
We again repeat the step, i.e., for every component, find the cheapest edge that connects it to some other component.
Component Cheapest Edge that connects it to some other component {0,1} 1-2 (or 0-7) {2,3,4,8} 2-5 {5,6,7} 2-5
The cheapest edges are highlighted with green color. Now MST becomes {0-1, 2-8, 2-3, 3-4, 5-6, 6-7, 1-2, 2-5}
At this stage, there is only one component {0, 1, 2, 3, 4, 5, 6, 7, 8} which has all edges. Since there is only one component left, we stop and return MST.
Implementation: Below is the implementation of the above algorithm. The input graph is represented as a collection of edges and union-find data structure is used to keep track of components.
C++
// Boruvka's algorithm to find Minimum Spanning // Tree of a given connected, undirected and weighted graph #include <bits/stdc++.h> using namespace std; // Class to represent a graph class Graph { int V; // No. of vertices vector<vector< int > >graph; // default dictionary to store graph // A utility function to find set of an element i // (uses path compression technique) int find(vector< int >& parent, int i) { if (parent[i] == i) { return i; } return find(parent, parent[i]); } // A function that does union of two sets of x and y // (uses union by rank) void unionSet(vector< int >& parent, vector< int >& rank, int x, int y) { int xroot = find(parent, x); int yroot = find(parent, y); // Attach smaller rank tree under root of high rank // tree (Union by Rank) if (rank[xroot] < rank[yroot]) { parent[xroot] = yroot; } else if (rank[xroot] > rank[yroot]) { parent[yroot] = xroot; } // If ranks are same, then make one as root and // increment its rank by one else { parent[yroot] = xroot; rank[xroot]++; } } public : Graph( int vertices) { V = vertices; graph = vector<vector< int > >(); } // function to add an edge to graph void addEdge( int u, int v, int w) { graph.push_back({ u, v, w }); } // The main function to construct MST using Kruskal's // algorithm void boruvkaMST() { vector< int > parent(V); // An array to store index of the cheapest edge of // subset. It store [u,v,w] for each component vector< int > rank(V); vector<vector< int > > cheapest(V, vector< int >(3, -1)); // Initially there are V different trees. // Finally there will be one tree that will be MST int numTrees = V; int MSTweight = 0; // Create V subsets with single elements for ( int node = 0; node < V; node++) { parent[node] = node; rank[node] = 0; } // Keep combining components (or sets) until all // components are not combined into single MST while (numTrees > 1) { // Traverse through all edges and update // cheapest of every component for ( int i = 0; i < graph.size(); i++) { // Find components (or sets) of two corners // of current edge int u = graph[i][0], v = graph[i][1], w = graph[i][2]; int set1 = find(parent, u), set2 = find(parent, v); // If two corners of current edge belong to // same set, ignore current edge. Else check // if current edge is closer to previous // cheapest edges of set1 and set2 if (set1 != set2) { if (cheapest[set1][2] == -1 || cheapest[set1][2] > w) { cheapest[set1] = { u, v, w }; } if (cheapest[set2][2] == -1 || cheapest[set2][2] > w) { cheapest[set2] = { u, v, w }; } } } // Consider the above picked cheapest edges and // add them to MST for ( int node = 0; node < V; node++) { // Check if cheapest for current set exists if (cheapest[node][2] != -1) { int u = cheapest[node][0], v = cheapest[node][1], w = cheapest[node][2]; int set1 = find(parent, u), set2 = find(parent, v); if (set1 != set2) { MSTweight += w; unionSet(parent, rank, set1, set2); printf ( "Edge %d-%d with weight %d " "included in MST\n" , u, v, w); numTrees--; } } } for ( int node = 0; node < V; node++) { // reset cheapest array cheapest[node][2] = -1; } } printf ( "Weight of MST is %d\n" , MSTweight); } }; int main() { Graph g(4); g.addEdge(0, 1, 10); g.addEdge(0, 2, 6); g.addEdge(0, 3, 5); g.addEdge(1, 3, 15); g.addEdge(2, 3, 4); g.boruvkaMST(); } // This code is contributed by prajwal kandekar |
Java
// Boruvka's algorithm to find Minimum Spanning // Tree of a given connected, undirected and weighted graph import java.util.*; // Class to represent a graph class Graph { private int V; // No. of vertices private List<List<Integer> > graph; // default dictionary to store graph Graph( int vertices) { V = vertices; graph = new ArrayList<>(); } // function to add an edge to graph void addEdge( int u, int v, int w) { graph.add(Arrays.asList(u, v, w)); } // A utility function to find set of an element i // (uses path compression technique) private int find(List<Integer> parent, int i) { if (parent.get(i) == i) { return i; } return find(parent, parent.get(i)); } // A function that does union of two sets of x and y // (uses union by rank) private void unionSet(List<Integer> parent, List<Integer> rank, int x, int y) { int xroot = find(parent, x); int yroot = find(parent, y); // Attach smaller rank tree under root of high rank // tree (Union by Rank) if (rank.get(xroot) < rank.get(yroot)) { parent.set(xroot, yroot); } else if (rank.get(xroot) > rank.get(yroot)) { parent.set(yroot, xroot); } // If ranks are same, then make one as root and // increment its rank by one else { parent.set(yroot, xroot); rank.set(xroot, rank.get(xroot) + 1 ); } } // The main function to construct MST using Kruskal's // algorithm void boruvkaMST() { List<Integer> parent = new ArrayList<>(); // An array to store index of the cheapest edge of // subset. It store [u,v,w] for each component List<Integer> rank = new ArrayList<>(); List<List<Integer> > cheapest = new ArrayList<>(); // Initially there are V different trees. // Finally there will be one tree that will be MST int numTrees = V; int MSTweight = 0 ; // Create V subsets with single elements for ( int node = 0 ; node < V; node++) { parent.add(node); rank.add( 0 ); cheapest.add(Arrays.asList(- 1 , - 1 , - 1 )); } // Keep combining components (or sets) until all // components are not combined into single MST while (numTrees > 1 ) { // Traverse through all edges and update // cheapest of every component for (List<Integer> edge : graph) { // Find components (or sets) of two corners // of current edge int u = edge.get( 0 ), v = edge.get( 1 ), w = edge.get( 2 ); int set1 = find(parent, u), set2 = find(parent, v); // If two corners of current edge belong to // same set, ignore current edge. Else check // if current edge is closer to previous // cheapest edges of set1 and set2 if (set1 != set2) { if (cheapest.get(set1).get( 2 ) == - 1 || cheapest.get(set1).get( 2 ) > w) { cheapest.set( set1, Arrays.asList(u, v, w)); } if (cheapest.get(set2).get( 2 ) == - 1 || cheapest.get(set2).get( 2 ) > w) { cheapest.set( set2, Arrays.asList(u, v, w)); } } } // Consider the above picked cheapest edges and // add them to MST for ( int node = 0 ; node < V; node++) { // Check if cheapest for current set exists if (cheapest.get(node).get( 2 ) != - 1 ) { int u = cheapest.get(node).get( 0 ), v = cheapest.get(node).get( 1 ), w = cheapest.get(node).get( 2 ); int set1 = find(parent, u), set2 = find(parent, v); if (set1 != set2) { MSTweight += w; unionSet(parent, rank, set1, set2); System.out.printf( "Edge %d-%d with weight %d included in MST\n" , u, v, w); numTrees--; } } } for (List<Integer> list : cheapest) { // reset cheapest array list.set( 2 , - 1 ); } } System.out.printf( "Weight of MST is %d\n" , MSTweight); } } class GFG { public static void main(String[] args) { Graph g = new Graph( 4 ); g.addEdge( 0 , 1 , 10 ); g.addEdge( 0 , 2 , 6 ); g.addEdge( 0 , 3 , 5 ); g.addEdge( 1 , 3 , 15 ); g.addEdge( 2 , 3 , 4 ); g.boruvkaMST(); } } // This code is contributed by prasad264 |
Python
# Boruvka's algorithm to find Minimum Spanning # Tree of a given connected, undirected and weighted graph from collections import defaultdict #Class to represent a graph class Graph: def __init__( self ,vertices): self .V = vertices #No. of vertices self .graph = [] # default dictionary to store graph # function to add an edge to graph def addEdge( self ,u,v,w): self .graph.append([u,v,w]) # A utility function to find set of an element i # (uses path compression technique) def find( self , parent, i): if parent[i] = = i: return i return self .find(parent, parent[i]) # A function that does union of two sets of x and y # (uses union by rank) def union( self , parent, rank, x, y): xroot = self .find(parent, x) yroot = self .find(parent, y) # Attach smaller rank tree under root of high rank tree # (Union by Rank) if rank[xroot] < rank[yroot]: parent[xroot] = yroot elif rank[xroot] > rank[yroot]: parent[yroot] = xroot #If ranks are same, then make one as root and increment # its rank by one else : parent[yroot] = xroot rank[xroot] + = 1 # The main function to construct MST using Kruskal's algorithm def boruvkaMST( self ): parent = []; rank = []; # An array to store index of the cheapest edge of # subset. It store [u,v,w] for each component cheapest = [] # Initially there are V different trees. # Finally there will be one tree that will be MST numTrees = self .V MSTweight = 0 # Create V subsets with single elements for node in range ( self .V): parent.append(node) rank.append( 0 ) cheapest = [ - 1 ] * self .V # Keep combining components (or sets) until all # components are not combined into single MST while numTrees > 1 : # Traverse through all edges and update # cheapest of every component for i in range ( len ( self .graph)): # Find components (or sets) of two corners # of current edge u,v,w = self .graph[i] set1 = self .find(parent, u) set2 = self .find(parent ,v) # If two corners of current edge belong to # same set, ignore current edge. Else check if # current edge is closer to previous # cheapest edges of set1 and set2 if set1 ! = set2: if cheapest[set1] = = - 1 or cheapest[set1][ 2 ] > w : cheapest[set1] = [u,v,w] if cheapest[set2] = = - 1 or cheapest[set2][ 2 ] > w : cheapest[set2] = [u,v,w] # Consider the above picked cheapest edges and add them # to MST for node in range ( self .V): #Check if cheapest for current set exists if cheapest[node] ! = - 1 : u,v,w = cheapest[node] set1 = self .find(parent, u) set2 = self .find(parent ,v) if set1 ! = set2 : MSTweight + = w self .union(parent, rank, set1, set2) print ( "Edge %d-%d with weight %d included in MST" % (u,v,w)) numTrees = numTrees - 1 #reset cheapest array cheapest = [ - 1 ] * self .V print ( "Weight of MST is %d" % MSTweight) g = Graph( 4 ) g.addEdge( 0 , 1 , 10 ) g.addEdge( 0 , 2 , 6 ) g.addEdge( 0 , 3 , 5 ) g.addEdge( 1 , 3 , 15 ) g.addEdge( 2 , 3 , 4 ) g.boruvkaMST() #This code is contributed by Neelam Yadav |
C#
// Boruvka's algorithm to find Minimum Spanning // Tree of a given connected, undirected and weighted graph using System; using System.Collections.Generic; // Class to represent a graph class Graph { private int V; // No. of vertices private List<List< int > > graph; // default dictionary to store graph // A utility function to find set of an element i // (uses path compression technique) private int Find(List< int > parent, int i) { if (parent[i] == i) { return i; } return Find(parent, parent[i]); } // A function that does union of two sets of x and y // (uses union by rank) private void UnionSet(List< int > parent, List< int > rank, int x, int y) { int xroot = Find(parent, x); int yroot = Find(parent, y); // Attach smaller rank tree under root of high rank // tree (Union by Rank) if (rank[xroot] < rank[yroot]) { parent[xroot] = yroot; } else if (rank[xroot] > rank[yroot]) { parent[yroot] = xroot; } // If ranks are same, then make one as root and // increment its rank by one else { parent[yroot] = xroot; rank[xroot]++; } } public Graph( int vertices) { V = vertices; graph = new List<List< int > >(); } // function to add an edge to graph public void AddEdge( int u, int v, int w) { graph.Add( new List< int >{ u, v, w }); } // The main function to construct MST using Kruskal's // algorithm public void boruvkaMST() { List< int > parent = new List< int >(); // An array to store index of the cheapest edge of // subset. It store [u,v,w] for each component List< int > rank = new List< int >(); List<List< int > > cheapest = new List<List< int > >(); // Initially there are V different trees. // Finally there will be one tree that will be MST int numTrees = V; int MSTweight = 0; // Create V subsets with single elements for ( int node = 0; node < V; node++) { parent.Add(node); rank.Add(0); cheapest.Add( new List< int >{ -1, -1, -1 }); } // Keep combining components (or sets) until all // components are not combined into single MST while (numTrees > 1) { // Traverse through all edges and update // cheapest of every component for ( int i = 0; i < graph.Count; i++) { // Find components (or sets) of two corners // of current edge int u = graph[i][0], v = graph[i][1], w = graph[i][2]; int set1 = Find(parent, u), set2 = Find(parent, v); // If two corners of current edge belong to // same set, ignore current edge. Else check // if current edge is closer to previous // cheapest edges of set1 and set2 if (set1 != set2) { if (cheapest[set1][2] == -1 || cheapest[set1][2] > w) { cheapest[set1] = new List< int >{ u, v, w }; } if (cheapest[set2][2] == -1 || cheapest[set2][2] > w) { cheapest[set2] = new List< int >{ u, v, w }; } } } // Consider the above picked cheapest edges and // add them to MST for ( int node = 0; node < V; node++) { // Check if cheapest for current set exists if (cheapest[node][2] != -1) { int u = cheapest[node][0], v = cheapest[node][1], w = cheapest[node][2]; int set1 = Find(parent, u), set2 = Find(parent, v); if (set1 != set2) { MSTweight += w; UnionSet(parent, rank, set1, set2); Console.WriteLine( "Edge {0}-{1} with weight {2} included in MST" , u, v, w); numTrees--; } } } for ( int node = 0; node < V; node++) { // reset cheapest array cheapest[node][2] = -1; } } Console.WriteLine( "Weight of MST is {0}" , MSTweight); } } public class GFG { static void Main( string [] args) { Graph g = new Graph(4); g.AddEdge(0, 1, 10); g.AddEdge(0, 2, 6); g.AddEdge(0, 3, 5); g.AddEdge(1, 3, 15); g.AddEdge(2, 3, 4); g.boruvkaMST(); } } // This code is contributed by prasad264 |
Javascript
// Boruvka's algorithm to find Minimum Spanning // Tree of a given connected, undirected and weighted graph // Class to represent a graph class Graph { constructor(vertices) { this .V = vertices; // No. of vertices this .graph = []; // default dictionary to store graph } // function to add an edge to graph addEdge(u, v, w) { this .graph.push([u, v, w]); } // A utility function to find set of an element i // (uses path compression technique) find(parent, i) { if (parent[i] === i) { return i; } return this .find(parent, parent[i]); } // A function that does union of two sets of x and y // (uses union by rank) union(parent, rank, x, y) { const xroot = this .find(parent, x); const yroot = this .find(parent, y); // Attach smaller rank tree under root of high rank tree // (Union by Rank) if (rank[xroot] < rank[yroot]) { parent[xroot] = yroot; } else if (rank[xroot] > rank[yroot]) { parent[yroot] = xroot; } // If ranks are same, then make one as root and increment // its rank by one else { parent[yroot] = xroot; rank[xroot] += 1; } } //The main function to construct MST using Kruskal's algorithm boruvkaMST() { const parent = []; // An array to store index of the cheapest edge of // subset. It store [u,v,w] for each component const rank = []; const cheapest = []; // Initially there are V different trees. // Finally there will be one tree that will be MST let numTrees = this .V; let MSTweight = 0; // Create V subsets with single elements for (let node = 0; node < this .V; node++) { parent.push(node); rank.push(0); cheapest[node] = -1; } // Keep combining components (or sets) until all // components are not combined into single MST while (numTrees > 1) { // Traverse through all edges and update // cheapest of every component for (let i = 0; i < this .graph.length; i++) { // Find components (or sets) of two corners // of current edge const [u, v, w] = this .graph[i]; const set1 = this .find(parent, u); const set2 = this .find(parent, v); // If two corners of current edge belong to // same set, ignore current edge. Else check if // current edge is closer to previous // cheapest edges of set1 and set2 if (set1 !== set2) { if (cheapest[set1] === -1 || cheapest[set1][2] > w) { cheapest[set1] = [u, v, w]; } if (cheapest[set2] === -1 || cheapest[set2][2] > w) { cheapest[set2] = [u, v, w]; } } } // Consider the above picked cheapest edges and add them // to MST for (let node = 0; node < this .V; node++) { // Check if cheapest for current set exists if (cheapest[node] !== -1) { const [u, v, w] = cheapest[node]; const set1 = this .find(parent, u); const set2 = this .find(parent, v); if (set1 !== set2) { MSTweight += w; this .union(parent, rank, set1, set2); console.log(`Edge ${u}-${v} with weight ${w} included in MST`); numTrees--; } } } for (let node = 0; node < this .V; node++) { // reset cheapest array cheapest[node] = -1; } } console.log(`Weight of MST is ${MSTweight}`); } } let g = new Graph(4); g.addEdge(0, 1, 10); g.addEdge(0, 2, 6); g.addEdge(0, 3, 5); g.addEdge(1, 3, 15); g.addEdge(2, 3, 4); g.boruvkaMST(); // This code is contributed by prajwal kandekar |
Edge 0-3 with weight 5 included in MST Edge 0-1 with weight 10 included in MST Edge 2-3 with weight 4 included in MST Weight of MST is 19
Interesting Facts about Boruvka’s algorithm:
- Time Complexity of Boruvka’s algorithm is O(E log V) which is the same as Kruskal’s and Prim’s algorithms.
- Boruvka’s algorithm is used as a step in a faster randomized algorithm that works in linear time O(E).
- Boruvka’s algorithm is the oldest minimum spanning tree algorithm that was discovered by Boruvka in 1926, long before computers even existed. The algorithm was published as a method of constructing an efficient electricity network.
Space complexity: The space complexity of Boruvka’s algorithm is O(V).
Exercise:
The above code assumes that the input graph is connected and it fails if a disconnected graph is given. Extend the above algorithm so that it works for a disconnected graph also and produces a forest.
Please Login to comment...