Finding the path from one vertex to rest using BFS

Given an adjacency list representation of a directed graph, the task is to find the path from source to every other node in the graph using BFS.

Examples:

Input:
Example
Output:
0 <- 2
1 <- 0 <- 2
2
3 <- 1 <- 0 <- 2
4 <- 5 <- 2
5 <- 2
6 <- 2


Approach: In the images shown below:

  • que[] array stores the vertices reached and we will enqueue a vertex only if it has not been visited and dequeue it once all its child node have been considered.
  • In order to distinguish whether the node has been visited or not we will put 1 in visited[] array at the respective index to signify it has been visited and if at given index 0 is present it will signify that it has not been visited.
  • Parent array is to store the parent node of each vertex. For ex. In case of 0 connected to 2, 2 will be the parent node of 0 and we will put 2 at the index 0 in the parent array.










Below is the implementation of the above approach:

Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
  
class GFG {
  
    // Function to print the path from
    // source (s) to destination (d)
    static void print(int parent[], int s, int d)
    {
        // The while loop will stop only when the
        // destination and the source node become equal
        while (s != d) {
  
            // Print the destination and store the parent
            // of the node in the destination since parent
            // stores the node through which
            // the current node has been reached
            System.out.print(d + " <- ");
            d = parent[d];
        }
  
        System.out.println(d);
    }
  
    // Finding Path using BFS ALgorithm
    static void bfs(List<List<Integer> > adjList, int source, int n)
    {
        int parent[] = new int[n];
        int que[] = new int[n];
        Arrays.fill(parent, 0);
        Arrays.fill(que, 0);
  
        int front = -1, rear = -1;
        int visited[] = new int[n];
        Arrays.fill(visited, 0);
        visited = 1;
        parent = source;
  
        // To add any non visited node we will increment the rear
        // and add that vertex to the end of the array (enqueuing)
        que[++rear] = source;
  
        int k;
  
        // The loop will continue till the rear and front are equal
        while (front != rear) {
  
            // Here Dequeuing is nothing but to increment the front int
            k = que[++front];
            List<Integer> list = adjList.get(k);
            for (int i = 0; i < list.size(); i++) {
                int j = list.get(i);
                if (visited[j] == 0) {
                    que[++rear] = j;
                    visited[j] = 1;
                    parent[j] = k;
                }
            }
        }
  
        // Print the path from source to every other node
        for (k = 0; k < n; k++)
            print(parent, source, k);
    }
  
    // Driver code
    public static void main(String args[])
    {
  
        // Adjacency list representation of the graph
        List<List<Integer> > adjList = new ArrayList<>();
  
        // Vertices 1 and 2 have an incoming edge
        // from vertex 0
        List<Integer> tmp = new ArrayList<Integer>(Arrays.asList(1, 2));
        adjList.add(tmp);
  
        // Vertex 3 has an incoming edge from vertex 1
        tmp = new ArrayList<Integer>(Arrays.asList(3));
        adjList.add(tmp);
  
        // Vertices 0, 5 and 6 have an incoming
        // edge from vertex 2
        tmp = new ArrayList<Integer>(Arrays.asList(0, 5, 6));
        adjList.add(tmp);
  
        // Vertices 1 and 4 have an incoming edge
        // from vertex 3
        tmp = new ArrayList<Integer>(Arrays.asList(1, 4));
        adjList.add(tmp);
  
        // Vertices 2 and 3 have an incoming edge
        // from vertex 4
        tmp = new ArrayList<Integer>(Arrays.asList(2, 3));
        adjList.add(tmp);
  
        // Vertices 4 and 6 have an incoming edge
        // from vertex 5
        tmp = new ArrayList<Integer>(Arrays.asList(4, 6));
        adjList.add(tmp);
  
        // Vertex 5 has an incoming edge from vertex 6
        tmp = new ArrayList<Integer>(Arrays.asList(5));
        adjList.add(tmp);
  
        int n = adjList.size();
  
        int source = 2;
        bfs(adjList, source, n);
    }
}

chevron_right


Python3

# Python3 implementation of the approach

# Function to print the path from
# src (s) to destination (d)
def printfunc(parent, s, d):

# The while loop will stop only when
# the destination and the src node
# become equal
while s != d:

# Print the destination and store
# the parent of the node in the
# destination since parent stores
# the node through which the current
# node has been reached
print(str(d) + ” <-", end = " ") d = parent[d] print(d) # Finding Path using BFS ALgorithm def bfs(adjList, src, n): parent = [0] * (n) que = [0] * (n) front, rear = -1, -1 visited = [0] * (n) visited[src] = 1 parent[src] = src # To add any non visited node we will # increment the rear and add that vertex # to the end of the array (enqueuing) rear += 1 que[rear] = src # The loop will continue till the rear # and front are equal while front != rear: # Here Dequeuing is nothing but to # increment the front int front += 1 k = que[front] List = adjList[k] for i in range(0, len(List)): j = List[i] if visited[j] == 0: rear += 1 que[rear] = j visited[j] = 1 parent[j] = k # Print the path from src to every # other node for k in range(0, n): printfunc(parent, src, k) # Driver code if __name__ == "__main__": # Adjacency list representation # of the graph adjList = [] # Vertices 1 and 2 have an incoming edge # from vertex 0 adjList.append([1, 2]) # Vertex 3 has an incoming edge # from vertex 1 adjList.append([3]) # Vertices 0, 5 and 6 have an incoming # edge from vertex 2 adjList.append([0, 5, 6]) # Vertices 1 and 4 have an incoming edge # from vertex 3 adjList.append([1, 4]) # Vertices 2 and 3 have an incoming edge # from vertex 4 adjList.append([2, 3]) # Vertices 4 and 6 have an incoming edge # from vertex 5 adjList.append([4, 6]) # Vertex 5 has an incoming edge # from vertex 6 adjList.append([5]) n = len(adjList) src = 2 bfs(adjList, src, n) # This code is contributed by Rituraj Jain [tabbyending]

Output:

0 <- 2
1 <- 0 <- 2
2
3 <- 1 <- 0 <- 2
4 <- 5 <- 2
5 <- 2
6 <- 2


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : rituraj_jain