# Area of a triangle with two vertices at midpoints of opposite sides of a square and the other vertex lying on vertex of a square

Given a positive integer **N** representing the side of a square, the task is to find the area of a triangle formed by connecting the midpoints of two adjacent sides and vertex opposite to the two sides.

**Examples:**

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend **live classes **with experts, please refer **DSA Live Classes for Working Professionals **and **Competitive Programming Live for Students**.

Input:N = 10Output:37.5

Input:N = 1Output:0.375

**Approach:** The given problem can be solved based on the following observations:

- The one side of the triangle will be the hypotenuse of the triangle formed with the vertices as two middle point and one vertex of the square at the intersection of the sides whose length of the side is given by .
- The length of the other two sides of the triangle is given by .
- Now, the sides of the triangle are known, therefore, the area of the triangle can be calculated using the Heron’s Formula.

Follow the steps below to solve the problem:

- Find the side of the triangle as discussed above formula and store it in the variables say
**a**,**b**, and**c**respectively. - After completing the above steps, print the value of
**(s*(s – a)*(s – b)*(s – c))**where^{1/2}**s = (a + b + c) / 2**.

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the area of the` `// triangle that inscribed in square` `double` `areaOftriangle(` `int` `side)` `{` ` ` `// Stores the length of the first` ` ` `// side of triangle` ` ` `double` `a = ` `sqrt` `(` `pow` `(side / 2, 2)` ` ` `+ ` `pow` `(side / 2, 2));` ` ` `// Stores the length of the second` ` ` `// side of triangle` ` ` `double` `b = ` `sqrt` `(` `pow` `(side, 2)` ` ` `+ ` `pow` `(side / 2, 2));` ` ` `// Stores the length of the third` ` ` `// side of triangle` ` ` `double` `c = ` `sqrt` `(` `pow` `(side, 2)` ` ` `+ ` `pow` `(side / 2, 2));` ` ` `double` `s = (a + b + c) / 2;` ` ` `// Stores the area of the triangle` ` ` `double` `area = ` `sqrt` `(s * (s - a)` ` ` `* (s - b) * (s - c));` ` ` `// Return the resultant area` ` ` `return` `area;` `}` `// Driver Code` `int` `main()` `{` ` ` `int` `N = 10;` ` ` `cout << areaOftriangle(N);` ` ` `return` `0;` `}` |

## Java

`// Java program for the above approach` `import` `java.util.*;` `class` `GFG{` ` ` `// Function to find the area of the` `// triangle that inscribed in square` `static` `double` `areaOftriangle(` `int` `side)` `{` ` ` ` ` `// Stores the length of the first` ` ` `// side of triangle` ` ` `double` `a = Math.sqrt(Math.pow(side / ` `2` `, ` `2` `) +` ` ` `Math.pow(side / ` `2` `, ` `2` `));` ` ` `// Stores the length of the second` ` ` `// side of triangle` ` ` `double` `b = Math.sqrt(Math.pow(side, ` `2` `) +` ` ` `Math.pow(side / ` `2` `, ` `2` `));` ` ` `// Stores the length of the third` ` ` `// side of triangle` ` ` `double` `c = Math.sqrt(Math.pow(side, ` `2` `) +` ` ` `Math.pow(side / ` `2` `, ` `2` `));` ` ` `double` `s = (a + b + c) / ` `2` `;` ` ` `// Stores the area of the triangle` ` ` `double` `area = Math.sqrt(s * (s - a) *` ` ` `(s - b) * (s - c));` ` ` `// Return the resultant area` ` ` `return` `area;` `}` ` ` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `N = ` `10` `;` ` ` ` ` `System.out.print(areaOftriangle(N));` `}` `}` `// This code is contributed by sanjoy_62` |

## Python3

`# Python3 program for the above approach` `from` `math ` `import` `sqrt` `# Function to find the area of the` `# triangle that inscribed in square` `def` `areaOftriangle(side):` ` ` ` ` `# Stores the length of the first` ` ` `# side of triangle` ` ` `a ` `=` `sqrt(` `pow` `(side ` `/` `2` `, ` `2` `) ` `+` `pow` `(side ` `/` `2` `, ` `2` `))` ` ` `# Stores the length of the second` ` ` `# side of triangle` ` ` `b ` `=` `sqrt(` `pow` `(side, ` `2` `) ` `+` `pow` `(side ` `/` `2` `, ` `2` `))` ` ` `# Stores the length of the third` ` ` `# side of triangle` ` ` `c ` `=` `sqrt(` `pow` `(side, ` `2` `) ` `+` `pow` `(side ` `/` `2` `, ` `2` `))` ` ` `s ` `=` `(a ` `+` `b ` `+` `c) ` `/` `2` ` ` `# Stores the area of the triangle` ` ` `area ` `=` `sqrt(s ` `*` `(s ` `-` `a) ` `*` `(s ` `-` `b) ` `*` `(s ` `-` `c))` ` ` `# Return the resultant area` ` ` `return` `round` `(area, ` `1` `)` `# Driver Code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` ` ` `N ` `=` `10` ` ` ` ` `print` `(areaOftriangle(N))` `# This code is contributed by mohit kumar 29` |

## C#

`// C# program for the above approach` `using` `System;` `class` `GFG{` ` ` `// Function to find the area of the` `// triangle that inscribed in square` `static` `double` `areaOftriangle(` `int` `side)` `{` ` ` ` ` `// Stores the length of the first` ` ` `// side of triangle` ` ` `double` `a = Math.Sqrt(Math.Pow(side / 2, 2) +` ` ` `Math.Pow(side / 2, 2));` ` ` `// Stores the length of the second` ` ` `// side of triangle` ` ` `double` `b = Math.Sqrt(Math.Pow(side, 2) +` ` ` `Math.Pow(side / 2, 2));` ` ` `// Stores the length of the third` ` ` `// side of triangle` ` ` `double` `c = Math.Sqrt(Math.Pow(side, 2) +` ` ` `Math.Pow(side / 2, 2));` ` ` `double` `s = (a + b + c) / 2;` ` ` `// Stores the area of the triangle` ` ` `double` `area = Math.Sqrt(s * (s - a) *` ` ` `(s - b) * (s - c));` ` ` `// Return the resultant area` ` ` `return` `area;` `}` ` ` `// Driver code` `public` `static` `void` `Main(` `string` `[] args)` `{` ` ` `int` `N = 10;` ` ` ` ` `Console.WriteLine(areaOftriangle(N));` `}}` `// This code is contributed by ukasp.` |

## Javascript

`<script>` ` ` `// Javascript program for the above approach` ` ` ` ` `// Function to find the area of the` ` ` `// triangle that inscribed in square` ` ` `function` `areaOftriangle(side)` ` ` `{` ` ` `// Stores the length of the first` ` ` `// side of triangle` ` ` `let a = Math.sqrt(Math.pow(side / 2, 2) +` ` ` `Math.pow(side / 2, 2));` ` ` `// Stores the length of the second` ` ` `// side of triangle` ` ` `let b = Math.sqrt(Math.pow(side, 2) +` ` ` `Math.pow(side / 2, 2));` ` ` `// Stores the length of the third` ` ` `// side of triangle` ` ` `let c = Math.sqrt(Math.pow(side, 2) +` ` ` `Math.pow(side / 2, 2));` ` ` `let s = (a + b + c) / 2;` ` ` `// Stores the area of the triangle` ` ` `let area = Math.sqrt(s * (s - a) *` ` ` `(s - b) * (s - c));` ` ` `// Return the resultant area` ` ` `return` `area.toFixed(1);` ` ` `}` ` ` ` ` `let N = 10;` ` ` ` ` `document.write(areaOftriangle(N));` `// This code is contributed by suresh07.` `</script>` |

**Output:**

37.5

**Time Complexity:** O(1)**Auxiliary Space:** O(1)