Find a pair with given sum in a Balanced BST
Given a Balanced Binary Search Tree and a target sum, write a function that returns true if there is a pair with sum equals to target sum, otherwise return false. Expected time complexity is O(n) and only O(Logn) extra space can be used. Any modification to Binary Search Tree is not allowed. Note that height of a Balanced BST is always O(Logn).
This problem is mainly extension of the previous post. Here we are not allowed to modify the BST.
The Brute Force Solution is to consider each node in the BST and search for (target – node->val) in the BST.
Below is the implementation of the above approach:
C++
// C++ code to find a pair with given sum // in a Balanced BST #include <bits/stdc++.h> using namespace std; // A binary tree node class Node { public : int data; Node* left; Node* right; Node( int d) { data = d; left = NULL; right = NULL; } }; class BinarySearchTree { // Root of BST public : Node* root; // Constructor BinarySearchTree() { root = NULL; } /* A recursive function to insert a new key in BST */ Node* insertRec(Node* root, int data) { /* If the tree is empty, return a new node */ if (root == NULL) { root = new Node(data); return root; } /* Otherwise, recur down the tree */ if (data < root->data) root->left = insertRec(root->left, data); else if (data > root->data) root->right = insertRec(root->right, data); return root; } // This method mainly calls insertRec() void insert( int key) { root = insertRec(root, key); } bool isPairPresent(Node* root, Node* temp, int target) { if (temp == NULL) return false ; return search(root, temp, target - temp->data) || isPairPresent(root, temp->left, target) || isPairPresent(root, temp->right, target); } bool search(Node* root, Node* temp, int k) { if (root == NULL) return false ; Node* c = root; bool flag = false ; while (c != NULL && flag != true ) { if (c->data == k && temp != c) { flag = true ; cout << "Pair Found: " << c->data << " + " << temp->data; return true ; } else if (k < c->data) c = c->left; else c = c->right; } return false ; } }; // Driver function int main() { BinarySearchTree* tree = new BinarySearchTree(); /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ tree->insert(15); tree->insert(10); tree->insert(20); tree->insert(8); tree->insert(12); tree->insert(16); tree->insert(25); bool test = tree->isPairPresent(tree->root, tree->root, 35); if (!test) cout << "No such values are found!" ; } //This code is contributed by Abhijeet Kumar(abhijeet19403) |
Java
// Java code to find a pair with given sum // in a Balanced BST import java.io.*; import java.util.ArrayList; // A binary tree node class Node { int data; Node left, right; Node( int val) { data = val; left = right = null ; } } class BinarySearchTree { // Root of BST Node root; // Constructor BinarySearchTree() { root = null ; } void insert( int key) { root = insertRec(root, key); } /* A recursive function to insert a new key in BST */ Node insertRec(Node root, int data) { /* If the tree is empty, return a new node */ if (root == null ) { root = new Node(data); return root; } /* Otherwise, recur down the tree */ if (data < root.data) root.left = insertRec(root.left, data); else if (data > root.data) root.right = insertRec(root.right, data); return root; } boolean isPairPresent(Node root, Node temp, int target) { if (temp == null ) return false ; return search(root, temp, target - temp.data) || isPairPresent(root, temp.left, target) || isPairPresent(root, temp.right, target); } boolean search(Node root, Node temp, int k) { if (root == null ) return false ; Node c = root; boolean flag = false ; while (c != null && flag != true ) { if (c.data == k && temp != c) { flag = true ; System.out.println( "Pair Found: " + c.data + " + " + temp.data); return true ; } else if (k < c.data) c = c.left; else c = c.right; } return false ; } public static void main(String[] args) { BinarySearchTree tree = new BinarySearchTree(); /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ tree.insert( 15 ); tree.insert( 10 ); tree.insert( 20 ); tree.insert( 8 ); tree.insert( 12 ); tree.insert( 16 ); tree.insert( 25 ); boolean test = tree.isPairPresent(tree.root, tree.root, 35 ); if (!test) System.out.println( "No such values are found!" ); } } |
Python3
# A binary tree node class Node: # Constructor to create a new node def __init__( self , data): self .data = data self .left = None self .right = None # Binary Search Tree class BinarySearchTree: # Constructor to create a new BST def __init__( self ): self .root = None # Function to insert an element in BST def insertRec( self , root, data): # Base Case: If the tree is empty if root is None : root = Node(data) return root # Otherwise recur down the tree if data < root.data: root.left = self .insertRec(root.left, data) elif data > root.data: root.right = self .insertRec(root.right, data) return root # Function to insert an element in BST def insert( self , data): self .root = self .insertRec( self .root, data) # Function to check if pair is present def isPairPresent( self , root, temp, target): if temp is None : return False return self .search(root, temp, target - temp.data) or \ self .isPairPresent(root, temp.left, target) or \ self .isPairPresent(root, temp.right, target) # Function to search an element in BST def search( self , root, temp, k): # Base case if root is None : return False c = root flag = False while c is not None and flag = = False : if c.data = = k and temp ! = c: flag = True print ( "Pair Found: " , c.data, "+" , temp.data) return True elif k < c.data: c = c.left else : c = c.right return False # Driver program if __name__ = = '__main__' : bst = BinarySearchTree() """ 15 / \ 10 20 / \ / \ 8 12 16 25 """ bst.insert( 15 ) bst.insert( 10 ) bst.insert( 20 ) bst.insert( 8 ) bst.insert( 12 ) bst.insert( 16 ) bst.insert( 25 ) test = bst.isPairPresent(bst.root, bst.root, 35 ) if not test: print ( "No such values are found!" ) |
C#
using System; // A binary tree node public class Node { public int data; public Node left; public Node right; public Node( int d) { data = d; left = null ; right = null ; } } public class BinarySearchTree { // Root of BST public Node root; // Constructor public BinarySearchTree() { root = null ; } /* A recursive function to insert a new key in BST */ public Node insertRec(Node root, int data) { /* If the tree is empty, return a new node */ if (root == null ) { root = new Node(data); return root; } /* Otherwise, recur down the tree */ if (data < root.data) root.left = insertRec(root.left, data); else if (data > root.data) root.right = insertRec(root.right, data); return root; } // This method mainly calls insertRec() public void insert( int key) { root = insertRec(root, key); } public bool isPairPresent(Node root, Node temp, int target) { if (temp == null ) return false ; return search(root, temp, target - temp.data) || isPairPresent(root, temp.left, target) || isPairPresent(root, temp.right, target); } public bool search(Node root, Node temp, int k) { if (root == null ) return false ; Node c = root; bool flag = false ; while (c != null && flag != true ) { if (c.data == k && temp != c) { flag = true ; Console.WriteLine( "Pair Found: " + c.data + " + " + temp.data); return true ; } else if (k < c.data) c = c.left; else c = c.right; } return false ; } } // Driver function public class Program { public static void Main( string [] args) { BinarySearchTree tree = new BinarySearchTree(); /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ tree.insert(15); tree.insert(10); tree.insert(20); tree.insert(8); tree.insert(12); tree.insert(16); tree.insert(25); bool test = tree.isPairPresent(tree.root, tree.root, 35); if (!test) Console.WriteLine( "No such values are found!" ); } } //This code is contributed by Ajax |
Javascript
// javascript code to find a pair with given sum // in a Balanced BST // A binary tree node class Node { constructor(d){ this .data = d; this .left = null ; this .right = null ; } } class BinarySearchTree { constructor(){ this .root= null ; } /* A recursive function to insert a new key in BST */ insertRec(r,data){ /* If the tree is empty, return a new node */ if (r == null ) { r = new Node(data); return r; } /* Otherwise, recur down the tree */ if (data < r.data) r.left = this .insertRec(r.left, data); else if (data > r.data) r.right = this .insertRec(r.right, data); return r; } // This method mainly calls insertRec() insert(key) { this .root = this .insertRec( this .root, key); } } function isPairPresent(root, temp, target) { if (temp == null ) return false ; return search(root, temp, target - temp.data) || isPairPresent(root, temp.left, target) || isPairPresent(root, temp.right, target); } function search( root, temp, k) { if (root == null ) return false ; let c = root; let flag = false ; while (c != null && flag != true ) { if (c.data == k && temp != c) { flag = true ; console.log( "Pair Found: " + c.data + " + " + temp.data); return true ; } else if (k < c.data) c = c.left; else c = c.right; } return false ; } // Driver function let tree = new BinarySearchTree(); /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ tree.insert(15); tree.insert(10); tree.insert(20); tree.insert(8); tree.insert(12); tree.insert(16); tree.insert(25); let test = isPairPresent(tree.root, tree.root, 35); if (test== false ) console.log( "No such values are found!" ); // This code is contributed by garg28harsh. |
Pair Found: 20 + 15
Time Complexity: O(N2logN), where N is the number of nodes in the given tree.
Auxiliary Space: O(logN), for recursive stack space.
A Better Solution is to create an auxiliary array and store the Inorder traversal of BST in the array. The array will be sorted as Inorder traversal of BST always produces sorted data. Once we have the Inorder traversal, we can pair in O(n) time (See this for details). This solution works in O(n) time but requires O(n) auxiliary space.
Implementation:
C++
#include<bits/stdc++.h> using namespace std; class Node{ public : int data; Node* left; Node* right; Node( int d) { data=d; left=NULL; right=NULL; } }; class BinarySearchTree { // Root of BST public : Node *root; // Constructor BinarySearchTree() { root = NULL; } // Utility function for inorder traversal of the tree void inorderUtil(Node* node) { if (node == NULL) return ; inorderUtil(node->left); cout << node->data << " " ; inorderUtil(node->right); } // Inorder traversal of the tree void inorder() { inorderUtil( this ->root); } /* A recursive function to insert a new key in BST */ Node* insertRec(Node* root, int data) { /* If the tree is empty, return a new node */ if (root == NULL) { root = new Node(data); return root; } /* Otherwise, recur down the tree */ if (data < root->data) root->left = insertRec(root->left, data); else if (data > root->data) root->right = insertRec(root->right, data); return root; } // This method mainly calls insertRec() void insert( int key) { root = insertRec(root, key); } // Method that adds values of given BST into vector // and hence returns the vector vector< int > treeToList(Node* node, vector< int >& list) { // Base Case if (node == NULL) return list; treeToList(node->left, list); list.push_back(node->data); treeToList(node->right, list); return list; } // method that checks if there is a pair present bool isPairPresent(Node* node, int target) { // This list a1 is passed as an argument // in treeToList method // which is later on filled by the values of BST vector< int > a1; // a2 list contains all the values of BST // returned by treeToList method vector< int > a2 = treeToList(node, a1); int start = 0; // Starting index of a2 int end = ( int )a2.size() - 1; // Ending index of a2 while (start < end) { if (a2[start] + a2[end] == target) // Target Found! { cout << "Pair Found: " << a2[start] << " + " << a2[end] << " = " << target << '\n' ; return true ; } if (a2[start] + a2[end] > target) // decrements end { end--; } if (a2[start] + a2[end] < target) // increments start { start++; } } cout << "No such values are found!\n" ; return false ; } }; // Driver function int main() { BinarySearchTree *tree = new BinarySearchTree(); /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ tree->insert(15); tree->insert(10); tree->insert(20); tree->insert(8); tree->insert(12); tree->insert(16); tree->insert(25); tree->isPairPresent(tree->root, 33); } |
Java
// Java code to find a pair with given sum // in a Balanced BST import java.util.ArrayList; // A binary tree node class Node { int data; Node left, right; Node( int d) { data = d; left = right = null ; } } class BinarySearchTree { // Root of BST Node root; // Constructor BinarySearchTree() { root = null ; } // Inorder traversal of the tree void inorder() { inorderUtil( this .root); } // Utility function for inorder traversal of the tree void inorderUtil(Node node) { if (node == null ) return ; inorderUtil(node.left); System.out.print(node.data + " " ); inorderUtil(node.right); } // This method mainly calls insertRec() void insert( int key) { root = insertRec(root, key); } /* A recursive function to insert a new key in BST */ Node insertRec(Node root, int data) { /* If the tree is empty, return a new node */ if (root == null ) { root = new Node(data); return root; } /* Otherwise, recur down the tree */ if (data < root.data) root.left = insertRec(root.left, data); else if (data > root.data) root.right = insertRec(root.right, data); return root; } // Method that adds values of given BST into ArrayList // and hence returns the ArrayList ArrayList<Integer> treeToList(Node node, ArrayList<Integer> list) { // Base Case if (node == null ) return list; treeToList(node.left, list); list.add(node.data); treeToList(node.right, list); return list; } // method that checks if there is a pair present boolean isPairPresent(Node node, int target) { // This list a1 is passed as an argument // in treeToList method // which is later on filled by the values of BST ArrayList<Integer> a1 = new ArrayList<>(); // a2 list contains all the values of BST // returned by treeToList method ArrayList<Integer> a2 = treeToList(node, a1); int start = 0 ; // Starting index of a2 int end = a2.size() - 1 ; // Ending index of a2 while (start < end) { if (a2.get(start) + a2.get(end) == target) // Target Found! { System.out.println( "Pair Found: " + a2.get(start) + " + " + a2.get(end) + " " + "= " + target); return true ; } if (a2.get(start) + a2.get(end) > target) // decrements end { end--; } if (a2.get(start) + a2.get(end) < target) // increments start { start++; } } System.out.println( "No such values are found!" ); return false ; } // Driver function public static void main(String[] args) { BinarySearchTree tree = new BinarySearchTree(); /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ tree.insert( 15 ); tree.insert( 10 ); tree.insert( 20 ); tree.insert( 8 ); tree.insert( 12 ); tree.insert( 16 ); tree.insert( 25 ); tree.isPairPresent(tree.root, 33 ); } } // This code is contributed by Kamal Rawal |
Python3
# Python3 code to find a pair with given sum # in a Balanced BST class Node: # Construct to create a new Node def __init__( self , key): self .data = key self .left = self .right = None # A utility function to insert a new # Node with given key in BST def insert(root: Node, key: int ): # If the tree is empty, return a new Node if root is None : return Node(key) # Otherwise, recur down the tree if root.data > key: root.left = insert(root.left, key) elif root.data < key: root.right = insert(root.right, key) # return the (unchanged) Node pointer return root # Function that adds values of given BST into # ArrayList and hence returns the ArrayList def tree_to_list(root: Node, arr: list ): if not root: return arr tree_to_list(root.left, arr) arr.append(root.data) tree_to_list(root.right, arr) return arr # Function that checks if there is a pair present def isPairPresent(root: Node, target: int ) - > bool : # This list a1 is passed as an argument # in treeToList method which is later # on filled by the values of BST arr1 = [] # a2 list contains all the values of BST # returned by treeToList method arr2 = tree_to_list(root, arr1) # Starting index of a2 start = 0 # Ending index of a2 end = len (arr2) - 1 while start < end: # If target found if arr2[start] + arr2[end] = = target: print (f "Pair Found: {arr2[start]} + {arr2[end]} = {target}" ) return True # Decrements end if arr2[start] + arr2[end] > target: end - = 1 # Increments start if arr2[start] + arr2[end] < target: start + = 1 print ( "No such values are found!" ) return False # Driver code if __name__ = = "__main__" : root = None root = insert(root, 15 ) root = insert(root, 10 ) root = insert(root, 20 ) root = insert(root, 8 ) root = insert(root, 12 ) root = insert(root, 16 ) root = insert(root, 25 ) isPairPresent(root, 33 ) # This code is contributed by shindesharad71 |
C#
// C# code to find a pair with given sum // in a Balanced BST using System; using System.Collections.Generic; // A binary tree node public class Node { public int data; public Node left, right; public Node( int d) { data = d; left = right = null ; } } public class BinarySearchTree { // Root of BST Node root; // Constructor BinarySearchTree() { root = null ; } // Inorder traversal of the tree void inorder() { inorderUtil( this .root); } // Utility function for inorder traversal of the tree void inorderUtil(Node node) { if (node == null ) return ; inorderUtil(node.left); Console.Write(node.data + " " ); inorderUtil(node.right); } // This method mainly calls insertRec() void insert( int key) { root = insertRec(root, key); } /* A recursive function to insert a new key in BST */ Node insertRec(Node root, int data) { /* If the tree is empty, return a new node */ if (root == null ) { root = new Node(data); return root; } /* Otherwise, recur down the tree */ if (data < root.data) root.left = insertRec(root.left, data); else if (data > root.data) root.right = insertRec(root.right, data); return root; } // Method that adds values of given BST into ArrayList // and hence returns the ArrayList List< int > treeToList(Node node, List< int > list) { // Base Case if (node == null ) return list; treeToList(node.left, list); list.Add(node.data); treeToList(node.right, list); return list; } // method that checks if there is a pair present bool isPairPresent(Node node, int target) { // This list a1 is passed as an argument // in treeToList method // which is later on filled by the values of BST List< int > a1 = new List< int >(); // a2 list contains all the values of BST // returned by treeToList method List< int > a2 = treeToList(node, a1); int start = 0; // Starting index of a2 int end = a2.Count - 1; // Ending index of a2 while (start < end) { if (a2[start] + a2[end] == target) // Target Found! { Console.WriteLine( "Pair Found: " + a2[start] + " + " + a2[end] + " " + "= " + target); return true ; } if (a2[start] + a2[end] > target) // decrements end { end--; } if (a2[start] + a2[end] < target) // increments start { start++; } } Console.WriteLine( "No such values are found!" ); return false ; } // Driver code public static void Main(String[] args) { BinarySearchTree tree = new BinarySearchTree(); /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ tree.insert(15); tree.insert(10); tree.insert(20); tree.insert(8); tree.insert(12); tree.insert(16); tree.insert(25); tree.isPairPresent(tree.root, 33); } } // This code contributed by Rajput-Ji |
Javascript
<script> // JavaScript code to find a pair with given sum // in a Balanced BST // A binary tree node class Node { constructor(d) { this .data = d; this .left = null ; this .right = null ; } } class BinarySearchTree { // Constructor constructor() { this .root = null ; } // Inorder traversal of the tree inorder() { this .inorderUtil( this .root); } // Utility function for inorder traversal of the tree inorderUtil(node) { if (node == null ) return ; this .inorderUtil(node.left); document.write(node.data + " " ); this .inorderUtil(node.right); } // This method mainly calls insertRec() insert(key) { this .root = this .insertRec( this .root, key); } /* A recursive function to insert a new key in BST */ insertRec(root, data) { /* If the tree is empty, return a new node */ if (root == null ) { root = new Node(data); return root; } /* Otherwise, recur down the tree */ if (data < root.data) root.left = this .insertRec(root.left, data); else if (data > root.data) root.right = this .insertRec(root.right, data); return root; } // Method that adds values of given BST into ArrayList // and hence returns the ArrayList treeToList(node, list) { // Base Case if (node == null ) return list; this .treeToList(node.left, list); list.push(node.data); this .treeToList(node.right, list); return list; } // method that checks if there is a pair present isPairPresent(node, target) { // This list a1 is passed as an argument // in treeToList method // which is later on filled by the values of BST var a1 = []; // a2 list contains all the values of BST // returned by treeToList method var a2 = this .treeToList(node, a1); var start = 0; // Starting index of a2 var end = a2.length - 1; // Ending index of a2 while (start < end) { if (a2[start] + a2[end] == target) { // Target Found! document.write( "Pair Found: " + a2[start] + " + " + a2[end] + " " + "= " + target + "<br>" ); return true ; } if (a2[start] + a2[end] > target) { // decrements end end--; } if (a2[start] + a2[end] < target) { // increments start start++; } } document.write( "No such values are found!" ); return false ; } } // Driver code var tree = new BinarySearchTree(); /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ tree.insert(15); tree.insert(10); tree.insert(20); tree.insert(8); tree.insert(12); tree.insert(16); tree.insert(25); tree.isPairPresent(tree.root, 33); </script> |
Pair Found: 8 + 25 = 33
Complexity Analysis:
- Time Complexity: O(n).
Inorder Traversal of BST takes linear time. - Auxiliary Space: O(n).
Use of array for storing the Inorder Traversal.
A space optimized solution is discussed in previous post. The idea was to first in-place convert BST to Doubly Linked List (DLL), then find pair in sorted DLL in O(n) time. This solution takes O(n) time and O(Logn) extra space, but it modifies the given BST.
The solution discussed below takes O(n) time, O(Logn) space and doesn’t modify BST. The idea is same as finding the pair in sorted array (See method 1 of this for details). We traverse BST in Normal Inorder and Reverse Inorder simultaneously. In reverse inorder, we start from the rightmost node which is the maximum value node. In normal inorder, we start from the left most node which is minimum value node. We add sum of current nodes in both traversals and compare this sum with given target sum. If the sum is same as target sum, we return true. If the sum is more than target sum, we move to next node in reverse inorder traversal, otherwise we move to next node in normal inorder traversal. If any of the traversals is finished without finding a pair, we return false.
Following is the implementation of this approach.
C++
/* In a balanced binary search tree isPairPresent two element which sums to a given value time O(n) space O(logn) */ #include <bits/stdc++.h> using namespace std; #define MAX_SIZE 100 // A BST node class node { public : int val; node *left, *right; }; // Stack type class Stack { public : int size; int top; node** array; }; // A utility function to create a stack of given size Stack* createStack( int size) { Stack* stack = new Stack(); stack->size = size; stack->top = -1; stack->array = new node*[(stack->size * sizeof (node*))]; return stack; } // BASIC OPERATIONS OF STACK int isFull(Stack* stack) { return stack->top - 1 == stack->size; } int isEmpty(Stack* stack) { return stack->top == -1; } void push(Stack* stack, node* node) { if (isFull(stack)) return ; stack->array[++stack->top] = node; } node* pop(Stack* stack) { if (isEmpty(stack)) return NULL; return stack->array[stack->top--]; } // Returns true if a pair with target // sum exists in BST, otherwise false bool isPairPresent(node* root, int target) { // Create two stacks. s1 is used for // normal inorder traversal and s2 is // used for reverse inorder traversal Stack* s1 = createStack(MAX_SIZE); Stack* s2 = createStack(MAX_SIZE); // Note the sizes of stacks is MAX_SIZE, // we can find the tree size and fix stack size // as O(Logn) for balanced trees like AVL and Red Black // tree. We have used MAX_SIZE to keep the code simple // done1, val1 and curr1 are used for // normal inorder traversal using s1 // done2, val2 and curr2 are used for // reverse inorder traversal using s2 bool done1 = false , done2 = false ; int val1 = 0, val2 = 0; node *curr1 = root, *curr2 = root; // The loop will break when we either find a pair or one of the two // traversals is complete while (1) { // Find next node in normal Inorder // traversal. See following post // https:// www.geeksforgeeks.org/inorder-tree-traversal-without-recursion/ while (done1 == false ) { if (curr1 != NULL) { push(s1, curr1); curr1 = curr1->left; } else { if (isEmpty(s1)) done1 = 1; else { curr1 = pop(s1); val1 = curr1->val; curr1 = curr1->right; done1 = 1; } } } // Find next node in REVERSE Inorder traversal. The only // difference between above and below loop is, in below loop // right subtree is traversed before left subtree while (done2 == false ) { if (curr2 != NULL) { push(s2, curr2); curr2 = curr2->right; } else { if (isEmpty(s2)) done2 = 1; else { curr2 = pop(s2); val2 = curr2->val; curr2 = curr2->left; done2 = 1; } } } // If we find a pair, then print the pair and return. The first // condition makes sure that two same values are not added if ((val1 != val2) && (val1 + val2) == target) { cout << "Pair Found: " << val1 << "+ " << val2 << " = " << target << endl; return true ; } // If sum of current values is smaller, // then move to next node in // normal inorder traversal else if ((val1 + val2) < target) done1 = false ; // If sum of current values is greater, // then move to next node in // reverse inorder traversal else if ((val1 + val2) > target) done2 = false ; // If any of the inorder traversals is // over, then there is no pair // so return false if (val1 >= val2) return false ; } } // A utility function to create BST node node* NewNode( int val) { node* tmp = new node(); tmp->val = val; tmp->right = tmp->left = NULL; return tmp; } // Driver program to test above functions int main() { /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ node* root = NewNode(15); root->left = NewNode(10); root->right = NewNode(20); root->left->left = NewNode(8); root->left->right = NewNode(12); root->right->left = NewNode(16); root->right->right = NewNode(25); int target = 33; if (isPairPresent(root, target) == false ) cout << "\nNo such values are found\n" ; return 0; } // This code is contributed by rathbhupendra |
C
/* In a balanced binary search tree isPairPresent two element which sums to a given value time O(n) space O(logn) */ #include <stdio.h> #include <stdlib.h> #define MAX_SIZE 100 // A BST node struct node { int val; struct node *left, *right; }; // Stack type struct Stack { int size; int top; struct node** array; }; // A utility function to create a stack of given size struct Stack* createStack( int size) { struct Stack* stack = ( struct Stack*) malloc ( sizeof ( struct Stack)); stack->size = size; stack->top = -1; stack->array = ( struct node**) malloc (stack->size * sizeof ( struct node*)); return stack; } // BASIC OPERATIONS OF STACK int isFull( struct Stack* stack) { return stack->top - 1 == stack->size; } int isEmpty( struct Stack* stack) { return stack->top == -1; } void push( struct Stack* stack, struct node* node) { if (isFull(stack)) return ; stack->array[++stack->top] = node; } struct node* pop( struct Stack* stack) { if (isEmpty(stack)) return NULL; return stack->array[stack->top--]; } // Returns true if a pair with target sum exists in BST, otherwise false bool isPairPresent( struct node* root, int target) { // Create two stacks. s1 is used for normal inorder traversal // and s2 is used for reverse inorder traversal struct Stack* s1 = createStack(MAX_SIZE); struct Stack* s2 = createStack(MAX_SIZE); // Note the sizes of stacks is MAX_SIZE, we can find the tree size and // fix stack size as O(Logn) for balanced trees like AVL and Red Black // tree. We have used MAX_SIZE to keep the code simple // done1, val1 and curr1 are used for normal inorder traversal using s1 // done2, val2 and curr2 are used for reverse inorder traversal using s2 bool done1 = false , done2 = false ; int val1 = 0, val2 = 0; struct node *curr1 = root, *curr2 = root; // The loop will break when we either find a pair or one of the two // traversals is complete while (1) { // Find next node in normal Inorder traversal. See following post // https:// www.geeksforgeeks.org/inorder-tree-traversal-without-recursion/ while (done1 == false ) { if (curr1 != NULL) { push(s1, curr1); curr1 = curr1->left; } else { if (isEmpty(s1)) done1 = 1; else { curr1 = pop(s1); val1 = curr1->val; curr1 = curr1->right; done1 = 1; } } } // Find next node in REVERSE Inorder traversal. The only // difference between above and below loop is, in below loop // right subtree is traversed before left subtree while (done2 == false ) { if (curr2 != NULL) { push(s2, curr2); curr2 = curr2->right; } else { if (isEmpty(s2)) done2 = 1; else { curr2 = pop(s2); val2 = curr2->val; curr2 = curr2->left; done2 = 1; } } } // If we find a pair, then print the pair and return. The first // condition makes sure that two same values are not added if ((val1 != val2) && (val1 + val2) == target) { printf ( "\n Pair Found: %d + %d = %d\n" , val1, val2, target); return true ; } // If sum of current values is smaller, then move to next node in // normal inorder traversal else if ((val1 + val2) < target) done1 = false ; // If sum of current values is greater, then move to next node in // reverse inorder traversal else if ((val1 + val2) > target) done2 = false ; // If any of the inorder traversals is over, then there is no pair // so return false if (val1 >= val2) return false ; } } // A utility function to create BST node struct node* NewNode( int val) { struct node* tmp = ( struct node*) malloc ( sizeof ( struct node)); tmp->val = val; tmp->right = tmp->left = NULL; return tmp; } // Driver program to test above functions int main() { /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ struct node* root = NewNode(15); root->left = NewNode(10); root->right = NewNode(20); root->left->left = NewNode(8); root->left->right = NewNode(12); root->right->left = NewNode(16); root->right->right = NewNode(25); int target = 33; if (isPairPresent(root, target) == false ) printf ( "\n No such values are found\n" ); getchar (); return 0; } |
Java
/* In a balanced binary search tree isPairPresent two element which sums to a given value time O(n) space O(logn) */ import java.util.*; class GFG { static final int MAX_SIZE= 100 ; // A BST node static class node { int val; node left, right; }; // Stack type static class Stack { int size; int top; node []array; }; // A utility function to create a stack of given size static Stack createStack( int size) { Stack stack = new Stack(); stack.size = size; stack.top = - 1 ; stack.array = new node[stack.size]; return stack; } // BASIC OPERATIONS OF STACK static int isFull(Stack stack) { return (stack.top - 1 == stack.size)? 1 : 0 ; } static int isEmpty(Stack stack) { return stack.top == - 1 ? 1 : 0 ; } static void push(Stack stack, node node) { if (isFull(stack)== 1 ) return ; stack.array[++stack.top] = node; } static node pop(Stack stack) { if (isEmpty(stack) == 1 ) return null ; return stack.array[stack.top--]; } // Returns true if a pair with target // sum exists in BST, otherwise false static boolean isPairPresent(node root, int target) { // Create two stacks. s1 is used for // normal inorder traversal and s2 is // used for reverse inorder traversal Stack s1 = createStack(MAX_SIZE); Stack s2 = createStack(MAX_SIZE); // Note the sizes of stacks is MAX_SIZE, // we can find the tree size and fix stack size // as O(Logn) for balanced trees like AVL and Red Black // tree. We have used MAX_SIZE to keep the code simple // done1, val1 and curr1 are used for // normal inorder traversal using s1 // done2, val2 and curr2 are used for // reverse inorder traversal using s2 boolean done1 = false , done2 = false ; int val1 = 0 , val2 = 0 ; node curr1 = root, curr2 = root; // The loop will break when we either // find a pair or one of the two // traversals is complete while ( true ) { // Find next node in normal Inorder // traversal. See following post // https:// www.geeksforgeeks.org/inorder-tree-traversal-without-recursion/ while (done1 == false ) { if (curr1 != null ) { push(s1, curr1); curr1 = curr1.left; } else { if (isEmpty(s1) == 1 ) done1 = true ; else { curr1 = pop(s1); val1 = curr1.val; curr1 = curr1.right; done1 = true ; } } } // Find next node in REVERSE Inorder traversal. The only // difference between above and below loop is, in below loop // right subtree is traversed before left subtree while (done2 == false ) { if (curr2 != null ) { push(s2, curr2); curr2 = curr2.right; } else { if (isEmpty(s2) == 1 ) done2 = true ; else { curr2 = pop(s2); val2 = curr2.val; curr2 = curr2.left; done2 = true ; } } } // If we find a pair, then print the pair and return. The first // condition makes sure that two same values are not added if ((val1 != val2) && (val1 + val2) == target) { System.out.print( "Pair Found: " + val1+ "+ " + val2+ " = " + target + "\n" ); return true ; } // If sum of current values is smaller, // then move to next node in // normal inorder traversal else if ((val1 + val2) < target) done1 = false ; // If sum of current values is greater, // then move to next node in // reverse inorder traversal else if ((val1 + val2) > target) done2 = false ; // If any of the inorder traversals is // over, then there is no pair // so return false if (val1 >= val2) return false ; } } // A utility function to create BST node static node NewNode( int val) { node tmp = new node(); tmp.val = val; tmp.right = tmp.left = null ; return tmp; } // Driver program to test above functions public static void main(String[] args) { /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ node root = NewNode( 15 ); root.left = NewNode( 10 ); root.right = NewNode( 20 ); root.left.left = NewNode( 8 ); root.left.right = NewNode( 12 ); root.right.left = NewNode( 16 ); root.right.right = NewNode( 25 ); int target = 33 ; if (isPairPresent(root, target) == false ) System.out.print( "\nNo such values are found\n" ); } } // This code is contributed by aashish1995 |
Python3
# In a balanced binary search tree # isPairPresent two element which sums to # a given value time O(n) space O(logn) MAX_SIZE = 100 # A BST node class Node: def __init__( self ,val): self .val = val self .left = self .right = None # Stack type class Stack: def __init__( self ): self .size = 0 self .top = 0 self .array = [] # A utility function to create a stack of given size def createStack(size): stack = Stack() stack.size = size stack.top = - 1 stack.array = [ 0 for i in range (stack.size)] return stack # BASIC OPERATIONS OF STACK def isFull(stack): return 1 if (stack.top - 1 = = stack.size) else 0 def isEmpty(stack): return 1 if stack.top = = - 1 else 0 def push(stack,node): if (isFull(stack) = = 1 ): return stack.array[stack.top + 1 ] = node stack.top + = 1 def pop(stack): if (isEmpty(stack) = = 1 ): return None x = stack.array[stack.top] stack.top - = 1 return x # Returns true if a pair with target # sum exists in BST, otherwise False def isPairPresent(root,target): # Create two stacks. s1 is used for # normal inorder traversal and s2 is # used for reverse inorder traversal s1 = createStack(MAX_SIZE) s2 = createStack(MAX_SIZE) # Note the sizes of stacks is MAX_SIZE, # we can find the tree size and fix stack size # as O(Logn) for balanced trees like AVL and Red Black # tree. We have used MAX_SIZE to keep the code simple # done1, val1 and curr1 are used for # normal inorder traversal using s1 # done2, val2 and curr2 are used for # reverse inorder traversal using s2 done1,done2 = False , False val1,val2 = 0 , 0 curr1,curr2 = root,root # The loop will break when we either # find a pair or one of the two # traversals is complete while ( True ): # Find next node in normal Inorder # traversal. See following post # https:# www.geeksforgeeks.org/inorder-tree-traversal-without-recursion/ while (done1 = = False ): if (curr1 ! = None ): push(s1, curr1) curr1 = curr1.left else : if (isEmpty(s1) = = 1 ): done1 = True else : curr1 = pop(s1) val1 = curr1.val curr1 = curr1.right done1 = True # Find next node in REVERSE Inorder traversal. The only # difference between above and below loop is, in below loop # right subtree is traversed before left subtree while (done2 = = False ): if (curr2 ! = None ): push(s2, curr2) curr2 = curr2.right else : if (isEmpty(s2) = = 1 ): done2 = True else : curr2 = pop(s2) val2 = curr2.val curr2 = curr2.left done2 = True # If we find a pair, then print the pair and return. The first # condition makes sure that two same values are not added if ((val1 ! = val2) and (val1 + val2) = = target): print ( "Pair Found: " + str (val1) + " + " + str (val2) + " = " + str (target)) return True # If sum of current values is smaller, # then move to next node in # normal inorder traversal elif ((val1 + val2) < target): done1 = False # If sum of current values is greater, # then move to next node in # reverse inorder traversal elif ((val1 + val2) > target): done2 = False # If any of the inorder traversals is # over, then there is no pair # so return False if (val1 > = val2): return False # Driver program to test above functions # 15 # / \ # 10 20 # / \ / \ # 8 12 16 25 root = Node( 15 ) root.left = Node( 10 ) root.right = Node( 20 ) root.left.left = Node( 8 ) root.left.right = Node( 12 ) root.right.left = Node( 16 ) root.right.right = Node( 25 ) target = 33 if (isPairPresent(root, target) = = False ): print ( "<br>No such values are found" ) # This code is contributed by shinjanpatra |
C#
/* In a balanced binary search tree isPairPresent two element which sums to a given value time O(n) space O(logn) */ using System; using System.Collections.Generic; public class GFG { static readonly int MAX_SIZE= 100; // A BST node public class node { public int val; public node left, right; }; // Stack type public class Stack { public int size; public int top; public node []array; }; // A utility function to create a stack of given size static Stack createStack( int size) { Stack stack = new Stack(); stack.size = size; stack.top = -1; stack.array = new node[stack.size]; return stack; } // BASIC OPERATIONS OF STACK static int isFull(Stack stack) { return (stack.top - 1 == stack.size) ? 1 : 0 ; } static int isEmpty(Stack stack) { return stack.top == -1?1:0; } static void push(Stack stack, node node) { if (isFull(stack)==1) return ; stack.array[++stack.top] = node; } static node pop(Stack stack) { if (isEmpty(stack) == 1) return null ; return stack.array[stack.top--]; } // Returns true if a pair with target // sum exists in BST, otherwise false static bool isPairPresent(node root, int target) { // Create two stacks. s1 is used for // normal inorder traversal and s2 is // used for reverse inorder traversal Stack s1 = createStack(MAX_SIZE); Stack s2 = createStack(MAX_SIZE); // Note the sizes of stacks is MAX_SIZE, // we can find the tree size and fix stack size // as O(Logn) for balanced trees like AVL and Red Black // tree. We have used MAX_SIZE to keep the code simple // done1, val1 and curr1 are used for // normal inorder traversal using s1 // done2, val2 and curr2 are used for // reverse inorder traversal using s2 bool done1 = false , done2 = false ; int val1 = 0, val2 = 0; node curr1 = root, curr2 = root; // The loop will break when we either // find a pair or one of the two // traversals is complete while ( true ) { // Find next node in normal Inorder // traversal. See following post // https:// www.geeksforgeeks.org/inorder-tree-traversal-without-recursion/ while (done1 == false ) { if (curr1 != null ) { push(s1, curr1); curr1 = curr1.left; } else { if (isEmpty(s1) == 1) done1 = true ; else { curr1 = pop(s1); val1 = curr1.val; curr1 = curr1.right; done1 = true ; } } } // Find next node in REVERSE Inorder traversal. The only // difference between above and below loop is, in below loop // right subtree is traversed before left subtree while (done2 == false ) { if (curr2 != null ) { push(s2, curr2); curr2 = curr2.right; } else { if (isEmpty(s2) == 1) done2 = true ; else { curr2 = pop(s2); val2 = curr2.val; curr2 = curr2.left; done2 = true ; } } } // If we find a pair, then print the pair and return. The first // condition makes sure that two same values are not added if ((val1 != val2) && (val1 + val2) == target) { Console.Write( "Pair Found: " + val1+ "+ " + val2+ " = " + target + "\n" ); return true ; } // If sum of current values is smaller, // then move to next node in // normal inorder traversal else if ((val1 + val2) < target) done1 = false ; // If sum of current values is greater, // then move to next node in // reverse inorder traversal else if ((val1 + val2) > target) done2 = false ; // If any of the inorder traversals is // over, then there is no pair // so return false if (val1 >= val2) return false ; } } // A utility function to create BST node static node NewNode( int val) { node tmp = new node(); tmp.val = val; tmp.right = tmp.left = null ; return tmp; } // Driver program to test above functions public static void Main(String[] args) { /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ node root = NewNode(15); root.left = NewNode(10); root.right = NewNode(20); root.left.left = NewNode(8); root.left.right = NewNode(12); root.right.left = NewNode(16); root.right.right = NewNode(25); int target = 33; if (isPairPresent(root, target) == false ) Console.Write( "\nNo such values are found\n" ); } } // This code is contributed by aashish1995 |
Javascript
<script> /* In a balanced binary search tree isPairPresent two element which sums to a given value time O(n) space O(logn) */ let MAX_SIZE= 100; // A BST node class Node { constructor(val) { this .val = val; this .left = this .right = null ; } } // Stack type class Stack { constructor() { this .size = 0; this .top = 0; this .array; } } // A utility function to create a stack of given size function createStack(size) { let stack = new Stack(); stack.size = size; stack.top = -1; stack.array = new Array(stack.size); return stack; } // BASIC OPERATIONS OF STACK function isFull(stack) { return (stack.top - 1 == stack.size)?1:0 ; } function isEmpty(stack) { return stack.top == -1?1:0; } function push(stack,node) { if (isFull(stack)==1) return ; stack.array[++stack.top] = node; } function pop(stack) { if (isEmpty(stack) == 1) return null ; return stack.array[stack.top--]; } // Returns true if a pair with target // sum exists in BST, otherwise false function isPairPresent(root,target) { // Create two stacks. s1 is used for // normal inorder traversal and s2 is // used for reverse inorder traversal let s1 = createStack(MAX_SIZE); let s2 = createStack(MAX_SIZE); // Note the sizes of stacks is MAX_SIZE, // we can find the tree size and fix stack size // as O(Logn) for balanced trees like AVL and Red Black // tree. We have used MAX_SIZE to keep the code simple // done1, val1 and curr1 are used for // normal inorder traversal using s1 // done2, val2 and curr2 are used for // reverse inorder traversal using s2 let done1 = false , done2 = false ; let val1 = 0, val2 = 0; let curr1 = root, curr2 = root; // The loop will break when we either // find a pair or one of the two // traversals is complete while ( true ) { // Find next node in normal Inorder // traversal. See following post // https:// www.geeksforgeeks.org/inorder-tree-traversal-without-recursion/ while (done1 == false ) { if (curr1 != null ) { push(s1, curr1); curr1 = curr1.left; } else { if (isEmpty(s1) == 1) done1 = true ; else { curr1 = pop(s1); val1 = curr1.val; curr1 = curr1.right; done1 = true ; } } } // Find next node in REVERSE Inorder traversal. The only // difference between above and below loop is, in below loop // right subtree is traversed before left subtree while (done2 == false ) { if (curr2 != null ) { push(s2, curr2); curr2 = curr2.right; } else { if (isEmpty(s2) == 1) done2 = true ; else { curr2 = pop(s2); val2 = curr2.val; curr2 = curr2.left; done2 = true ; } } } // If we find a pair, then print the pair and return. The first // condition makes sure that two same values are not added if ((val1 != val2) && (val1 + val2) == target) { document.write( "Pair Found: " + val1+ "+ " + val2+ " = " + target + "<br>" ); return true ; } // If sum of current values is smaller, // then move to next node in // normal inorder traversal else if ((val1 + val2) < target) done1 = false ; // If sum of current values is greater, // then move to next node in // reverse inorder traversal else if ((val1 + val2) > target) done2 = false ; // If any of the inorder traversals is // over, then there is no pair // so return false if (val1 >= val2) return false ; } } // Driver program to test above functions /* 15 / \ 10 20 / \ / \ 8 12 16 25 */ let root = new Node(15); root.left = new Node(10); root.right = new Node(20); root.left.left = new Node(8); root.left.right = new Node(12); root.right.left = new Node(16); root.right.right = new Node(25); let target = 33; if (isPairPresent(root, target) == false ) document.write( "<br>No such values are found<br>" ); // This code is contributed by avanitrachhadiya2155 </script> |
Pair Found: 8+ 25 = 33
Complexity Analysis:
- Time Complexity: O(n).
Inorder Traversal of BST takes linear time. - Auxiliary Space: O(logn).
The stack holds log N values as at a single time
https://youtube.com/watch?v=TvAFvAoS6s8%3Flist%3DPLqM7alHXFySHCXD7r1J0ky9Zg_GBB1dbk
Please Login to comment...