Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App

Related Articles

Exploring Data Distribution | Set 2

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Prerequisite: Exploring Data Distribution | Set 1
Terms related to Exploration of Data Distribution 

-> Boxplot
-> Frequency Table
-> Histogram 
-> Density Plot

To get the link to csv file used, click here.
Loading Libraries 


import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

Loading Data 


data = pd.read_csv("../data/state.csv")
# Adding a new column with derived data
data['PopulationInMillions'] = data['Population']/1000000
print (data.head(10))

Output : 


  • Histogram: It is a way of visualizing data distribution through frequency table with bins on the x-axis and data count on the y-axis. 
    Code – Histogram


# Histogram Population In Millions
fig, ax2 = plt.subplots()
ax2 = sns.distplot(data.PopulationInMillions, kde = False)
ax2.set_ylabel("Frequency", fontsize = 15)
ax2.set_xlabel("Population by State in Millions", fontsize = 15)
ax2.set_title("Population - Histogram", fontsize = 20)

  • Output : 

  • Density Plot: It is related to histogram as it shows data-values being distributed as continuous line. It is a smoothed histogram version. The output below is the density plot superposed over histogram. 
    Code – Density Plot for the data


# Density Plot - Population
fig, ax3 = plt.subplots()
ax3 = sns.distplot(data.Population, kde = True)
ax3.set_ylabel("Density", fontsize = 15)
ax3.set_xlabel("Murder Rate per Million", fontsize = 15)
ax3.set_title("Density Plot - Population", fontsize = 20)

  • Output : 

My Personal Notes arrow_drop_up
Last Updated : 25 Jan, 2022
Like Article
Save Article
Similar Reads
Related Tutorials