Open In App
Related Articles

Exploratory Data Analysis in Python | Set 1

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report
Exploratory Data Analysis is a technique to analyze data with visual techniques and all statistical results. We will learn about how to apply these techniques before applying any Machine Learning Models. To get the link to csv file used, click here. Loading Libraries:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
  
  
from scipy.stats import trim_mean

                    
Loading Data:
data = pd.read_csv("state.csv")
  
# Check the type of data
print ("Type : ", type(data), "\n\n")
  
# Printing Top 10 Records
print ("Head -- \n", data.head(10))
  
# Printing last 10 Records 
print ("\n\n Tail -- \n", data.tail(10))

                    
Output :
Type : class 'pandas.core.frame.DataFrame'


Head -- 
          State  Population  Murder.Rate Abbreviation
0      Alabama     4779736          5.7           AL
1       Alaska      710231          5.6           AK
2      Arizona     6392017          4.7           AZ
3     Arkansas     2915918          5.6           AR
4   California    37253956          4.4           CA
5     Colorado     5029196          2.8           CO
6  Connecticut     3574097          2.4           CT
7     Delaware      897934          5.8           DE
8      Florida    18801310          5.8           FL
9      Georgia     9687653          5.7           GA


 Tail -- 
             State  Population  Murder.Rate Abbreviation
40   South Dakota      814180          2.3           SD
41      Tennessee     6346105          5.7           TN
42          Texas    25145561          4.4           TX
43           Utah     2763885          2.3           UT
44        Vermont      625741          1.6           VT
45       Virginia     8001024          4.1           VA
46     Washington     6724540          2.5           WA
47  West Virginia     1852994          4.0           WV
48      Wisconsin     5686986          2.9           WI
49        Wyoming      563626          2.7           WY
Code #1 : Adding Column to the dataframe
# Adding a new column with derived data 
  
data['PopulationInMillions'] = data['Population']/1000000
  
# Changed data
print (data.head(5))

                    
Output :
        State  Population  Murder.Rate Abbreviation  PopulationInMillions
0     Alabama     4779736          5.7           AL              4.779736
1      Alaska      710231          5.6           AK              0.710231
2     Arizona     6392017          4.7           AZ              6.392017
3    Arkansas     2915918          5.6           AR              2.915918
4  California    37253956          4.4           CA             37.253956
Code #2 : Data Description
data.describe()

                    
Output : Code #3 : Data Info
data.info()

                    
Output :

RangeIndex: 50 entries, 0 to 49
Data columns (total 4 columns):
State           50 non-null object
Population      50 non-null int64
Murder.Rate     50 non-null float64
Abbreviation    50 non-null object
dtypes: float64(1), int64(1), object(2)
memory usage: 1.6+ KB
Code #4 : Renaming a column heading
# Rename column heading as it 
# has '.' in it which will create
# problems when dealing functions 
  
data.rename(columns ={'Murder.Rate': 'MurderRate'}, inplace = True)
  
# Lets check the column headings
list(data)

                    
Output :
['State', 'Population', 'MurderRate', 'Abbreviation']
Code #5 : Calculating Mean
Population_mean = data.Population.mean()
print ("Population Mean : ", Population_mean)
  
MurderRate_mean = data.MurderRate.mean()
print ("\nMurderRate Mean : ", MurderRate_mean)

                    
Output:
Population Mean :  6162876.3

MurderRate Mean :  4.066
Code #6 : Trimmed mean
# Mean after discarding top and 
# bottom 10 % values eliminating outliers
  
population_TM = trim_mean(data.Population, 0.1)
print ("Population trimmed mean: ", population_TM)
  
murder_TM = trim_mean(data.MurderRate, 0.1)
print ("\nMurderRate trimmed mean: ", murder_TM)

                    
Output :
Population trimmed mean:  4783697.125

MurderRate trimmed mean:  3.9450000000000003
Code #7 : Weighted Mean
# here murder rate is weighed as per 
# the state population
  
murderRate_WM = np.average(data.MurderRate, weights = data.Population)
print ("Weighted MurderRate Mean: ", murderRate_WM)

                    
Output :
Weighted MurderRate Mean:  4.445833981123393
Code #8 : Median
Population_median = data.Population.median()
print ("Population median : ", Population_median)
  
MurderRate_median = data.MurderRate.median()
print ("\nMurderRate median : ", MurderRate_median)

                    
Output :
Population median :  4436369.5

MurderRate median :  4.0


Last Updated : 21 Jan, 2019
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads