Skip to content
Related Articles

Related Articles

Digital Low Pass Butterworth Filter in Python
  • Last Updated : 08 Dec, 2020

In this article, we are going to discuss how to design a Digital Low Pass Butterworth Filter using Python. The Butterworth filter is a type of signal processing filter designed to have a frequency response as flat as possible in the pass band. Let us take the below specifications to design the filter and observe the Magnitude, Phase & Impulse Response of the Digital Butterworth Filter.

The specifications are as follows: 

  • Sampling rate of 40 kHz
  • Pass band edge frequency of 4 kHz
  • Stop band edge frequency of 8kHz
  • Pass band ripple of 0.5 dB
  • Minimum stop band attenuation of40 dB

We will plot the magnitude, phase, and impulse response of the filter.

Step-by-step Approach:

Step 1: Importing all the necessary libraries.

Python3



filter_none

edit
close

play_arrow

link
brightness_4
code

# import required modules
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
import math

chevron_right


Step 2: Define variables with the given specifications of the filter.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Specifications of Filter
  
 # sampling frequency
f_sample = 40000 
  
# pass band frequency
f_pass = 4000  
  
# stop band frequency
f_stop = 8000  
  
# pass band ripple
fs = 0.5
  
# pass band freq in radian
wp = f_pass/(f_sample/2)  
  
# stop band freq in radian
ws = f_stop/(f_sample/2
  
# Sampling Time
Td = 1  
  
 # pass band ripple
g_pass = 0.5 
  
# stop band attenuation
g_stop = 40  

chevron_right


Step3: Building the filter using signal.buttord function.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Conversion to prewrapped analog frequency
omega_p = (2/Td)*np.tan(wp/2)
omega_s = (2/Td)*np.tan(ws/2)
  
  
# Design of Filter using signal.buttord function
N, Wn = signal.buttord(omega_p, omega_s, g_pass, g_stop, analog=True)
  
  
# Printing the values of order & cut-off frequency!
print("Order of the Filter=", N)  # N is the order
# Wn is the cut-off freq of the filter
print("Cut-off frequency= {:.3f} rad/s ".format(Wn))
  
  
# Conversion in Z-domain
  
# b is the numerator of the filter & a is the denominator
b, a = signal.butter(N, Wn, 'low', True)
z, p = signal.bilinear(b, a, fs)
# w is the freq in z-domain & h is the magnitude in z-domain
w, h = signal.freqz(z, p, 512)

chevron_right


Output:

Step 4: Plotting the Magnitude Response.

Python3



filter_none

edit
close

play_arrow

link
brightness_4
code

# Magnitude Response
plt.semilogx(w, 20*np.log10(abs(h)))
plt.xscale('log')
plt.title('Butterworth filter frequency response')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [dB]')
plt.margins(0, 0.1)
plt.grid(which='both', axis='both')
plt.axvline(100, color='green')
plt.show()

chevron_right


Output:

Step 5: Plotting the Impulse Response.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Impulse Response
imp = signal.unit_impulse(40)
c, d = signal.butter(N, 0.5)
response = signal.lfilter(c, d, imp)
  
plt.stem(np.arange(0, 40), imp, use_line_collection=True)
plt.stem(np.arange(0, 40), response, use_line_collection=True)
plt.margins(0, 0.1)
  
plt.xlabel('Time [samples]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()

chevron_right


Output:

Step 6: Plotting the Phase Response.

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Phase Response
fig, ax1 = plt.subplots()
  
ax1.set_title('Digital filter frequency response')
ax1.set_ylabel('Angle(radians)', color='g')
ax1.set_xlabel('Frequency [Hz]')
  
angles = np.unwrap(np.angle(h))
  
ax1.plot(w/2*np.pi, angles, 'g')
ax1.grid()
ax1.axis('tight')
plt.show()

chevron_right


Output:

Below is the complete program based on the above approach:

Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# import required modules
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
import math
  
  
# Specifications of Filter
  
 # sampling frequency
f_sample = 40000 
  
# pass band frequency
f_pass = 4000  
  
# stop band frequency
f_stop = 8000  
  
# pass band ripple
fs = 0.5
  
# pass band freq in radian
wp = f_pass/(f_sample/2)  
  
# stop band freq in radian
ws = f_stop/(f_sample/2
  
# Sampling Time
Td = 1  
  
 # pass band ripple
g_pass = 0.5 
  
# stop band attenuation
g_stop = 40  
  
  
# Conversion to prewrapped analog frequency
omega_p = (2/Td)*np.tan(wp/2)
omega_s = (2/Td)*np.tan(ws/2)
  
  
# Design of Filter using signal.buttord function
N, Wn = signal.buttord(omega_p, omega_s, g_pass, g_stop, analog=True)
  
  
# Printing the values of order & cut-off frequency!
print("Order of the Filter=", N)  # N is the order
# Wn is the cut-off freq of the filter
print("Cut-off frequency= {:.3f} rad/s ".format(Wn))
  
  
# Conversion in Z-domain
  
# b is the numerator of the filter & a is the denominator
b, a = signal.butter(N, Wn, 'low', True)
z, p = signal.bilinear(b, a, fs)
# w is the freq in z-domain & h is the magnitude in z-domain
w, h = signal.freqz(z, p, 512)
  
  
# Magnitude Response
plt.semilogx(w, 20*np.log10(abs(h)))
plt.xscale('log')
plt.title('Butterworth filter frequency response')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [dB]')
plt.margins(0, 0.1)
plt.grid(which='both', axis='both')
plt.axvline(100, color='green')
plt.show()
  
  
# Impulse Response
imp = signal.unit_impulse(40)
c, d = signal.butter(N, 0.5)
response = signal.lfilter(c, d, imp)
plt.stem(np.arange(0, 40), imp, use_line_collection=True)
plt.stem(np.arange(0, 40), response, use_line_collection=True)
plt.margins(0, 0.1)
plt.xlabel('Time [samples]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
  
  
# Phase Response
fig, ax1 = plt.subplots()
ax1.set_title('Digital filter frequency response')
ax1.set_ylabel('Angle(radians)', color='g')
ax1.set_xlabel('Frequency [Hz]')
angles = np.unwrap(np.angle(h))
ax1.plot(w/2*np.pi, angles, 'g')
ax1.grid()
ax1.axis('tight')
plt.show()

chevron_right


Output:


Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :