Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Digital High Pass Butterworth Filter in Python

  • Last Updated : 14 Aug, 2021

In this article, we are going to discuss how to design a Digital High Pass Butterworth Filter using Python. The Butterworth filter is a type of signal processing filter designed to have a frequency response as flat as possible in the pass band. Let us take the below specifications to design the filter and observe the Magnitude, Phase & Impulse Response of the Digital Butterworth Filter.

What is a High Pass Filter?

A high-pass filter is an electronic filter that passes signals with a frequency higher than a certain cutoff frequency and attenuates signals with frequencies lower than the cutoff frequency. The attenuation for each frequency depends on the filter design.

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Difference between a Digital High Pass Filter & Digital Low Pass Filter:

The most striking difference is in the amplitude response of the filters, we can clearly observe that in case of High Pass Filter the filter passes signals with a frequency higher than a certain cutoff frequency and attenuates signals with frequencies lower than the cutoff frequency while in case of Low Pass Filter the filter passes signals with a frequency lower than a certain cutoff frequency and attenuates all signals with frequencies higher than the specified cutoff value.



The specifications are as follows:  

  • Sampling rate of 3.5 kHz
  • Pass band edge frequency of 1050 Hz
  • Stop band edge frequency of 600Hz
  • Pass band ripple of 1 dB
  • Minimum stop band attenuation of 50 dB

We will plot the magnitude, phase, and impulse response of the filter.

Step-by-step Approach:

Step 1: Importing all the necessary libraries.

Python3




# Import required modules
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
import math

Step 2: Define variables with the given specifications of the filter.

Python3




# Specifications of Filter
   
 # sampling frequency
f_sample = 3500
   
# pass band frequency
f_pass = 1050
   
# stop band frequency
f_stop = 600
   
# pass band ripple
fs = 0.5
   
# pass band freq in radian
wp = f_pass/(f_sample/2)  
   
# stop band freq in radian
ws = f_stop/(f_sample/2
   
# Sampling Time
Td = 1 
   
 # pass band ripple
g_pass = 1
   
# stop band attenuation
g_stop = 50

Step3: Building the filter using signal.buttord() method.



Python3




# Conversion to prewrapped analog frequency
omega_p = (2/Td)*np.tan(wp/2)
omega_s = (2/Td)*np.tan(ws/2)
   
   
# Design of Filter using signal.buttord function
N, Wn = signal.buttord(omega_p, omega_s, g_pass, g_stop, analog=True)
   
   
# Printing the values of order & cut-off frequency!
print("Order of the Filter=", N)  # N is the order
# Wn is the cut-off freq of the filter
print("Cut-off frequency= {:.3f} rad/s ".format(Wn))
   
   
# Conversion in Z-domain
   
# b is the numerator of the filter & a is the denominator
b, a = signal.butter(N, Wn, 'high', True)
z, p = signal.bilinear(b, a, fs)
# w is the freq in z-domain & h is the magnitude in z-domain
w, h = signal.freqz(z, p, 512)

 Output:

 

Step 4: Plotting the Magnitude Response.

Python3




# Magnitude Response
plt.semilogx(w, 20*np.log10(abs(h)))
plt.xscale('log')
 
plt.title('Butterworth filter frequency response')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [dB]')
plt.margins(0, 0.1)
 
plt.grid(which='both', axis='both')
plt.axvline(100, color='green')
plt.show()

Output:

Step 5: Plotting the Impulse Response.

Python3






# Impulse response
imp = signal.unit_impulse(40)
c, d = signal.butter(N, 0.5)
response = signal.lfilter(c, d, imp)
 
# Illustrating impulse response
plt.stem(np.arange(0, 40), imp, markerfmt='D', use_line_collection=True)
plt.stem(np.arange(0, 40), response, use_line_collection=True)
plt.margins(0, 0.1)
 
plt.xlabel('Time [samples]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()

Output:

Step 6: Plotting the Phase Response.

Python3




# Phase response
fig, ax1 = plt.subplots()
 
ax1.set_title('Digital filter frequency response')
ax1.set_ylabel('Angle(radians)', color='g')
ax1.set_xlabel('Frequency [Hz]')
 
angles = np.unwrap(np.angle(h))
ax1.plot(w/2*np.pi, angles, 'g')
ax1.grid()
ax1.axis('tight')
 
plt.show()

Output:

Below is the complete program based on the above approach:

Python3




# import required modules
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
import math
 
 
# Specifications of Filter
   
 # sampling frequency
f_sample = 3500
   
# pass band frequency
f_pass = 1050
   
# stop band frequency
f_stop = 600
   
# pass band ripple
fs = 0.5
   
# pass band freq in radian
wp = f_pass/(f_sample/2)  
   
# stop band freq in radian
ws = f_stop/(f_sample/2
   
# Sampling Time
Td = 1 
   
 # pass band ripple
g_pass = 1
   
# stop band attenuation
g_stop = 50
 
# Conversion to prewrapped analog frequency
omega_p = (2/Td)*np.tan(wp/2)
omega_s = (2/Td)*np.tan(ws/2)
   
   
# Design of Filter using signal.buttord function
N, Wn = signal.buttord(omega_p, omega_s, g_pass, g_stop, analog=True)
   
   
# Printing the values of order & cut-off frequency!
print("Order of the Filter=", N)  # N is the order
# Wn is the cut-off freq of the filter
print("Cut-off frequency= {:.3f} rad/s ".format(Wn))
   
   
# Conversion in Z-domain
   
# b is the numerator of the filter & a is the denominator
b, a = signal.butter(N, Wn, 'high', True)
z, p = signal.bilinear(b, a, fs)
 
# w is the freq in z-domain & h is the magnitude in z-domain
w, h = signal.freqz(z, p, 512)
 
 
# Magnitude Response
plt.semilogx(w, 20*np.log10(abs(h)))
plt.xscale('log')
plt.title('Butterworth filter frequency response')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [dB]')
plt.margins(0, 0.1)
plt.grid(which='both', axis='both')
plt.axvline(100, color='green')
plt.show()
 
 
# Impulse Response
imp = signal.unit_impulse(40)
c, d = signal.butter(N, 0.5)
response = signal.lfilter(c, d, imp)
plt.stem(np.arange(0, 40),imp,markerfmt='D',use_line_collection=True)
plt.stem(np.arange(0,40), response,use_line_collection=True)
plt.margins(0, 0.1)
plt.xlabel('Time [samples]')
plt.ylabel('Amplitude')
plt.grid(True)
plt.show()
 
 
# Phase Response
fig, ax1 = plt.subplots()
ax1.set_title('Digital filter frequency response')
ax1.set_ylabel('Angle(radians)', color='g')
ax1.set_xlabel('Frequency [Hz]')
angles = np.unwrap(np.angle(h))
ax1.plot(w/2*np.pi, angles, 'g')
ax1.grid()
ax1.axis('tight')
plt.show()

 Output:

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!