Open In App

Depth First Search or DFS for disconnected Graph

Last Updated : 13 Jun, 2023
Improve
Improve
Like Article
Like
Save
Share
Report

Given a Disconnected Graph, the task is to implement DFS or Depth First Search Algorithm for this Disconnected Graph.

Example:

Input:

Disconnected Graph

Disconnected Graph

Output: 0 1 2 3

Algorithm for DFS on Disconnected Graph:

In the post for Depth First Search for Graph, only the vertices reachable from a given source vertex can be visited. All the vertices may not be reachable from a given vertex, as in a Disconnected graph. This issue can be resolved by following the below idea:

Iterate over all the vertices of the graph and for any unvisited vertex, run a DFS from that vertex. The recursive function in this case remains the same as in the previous post.

Code Implementation of DFS for Disconnected Graph:

C++

// C++ program to print DFS
// traversal for a given graph
#include <bits/stdc++.h>
using namespace std;

class Graph {

    // A function used by DFS
    void DFSUtil(int v);

public:
    map<int, bool> visited;
    map<int, list<int> > adj;

    // Function to add an edge to graph
    void addEdge(int v, int w);

    // Prints DFS traversal of the complete graph
    void DFS();
};

void Graph::addEdge(int v, int w)
{
    // Add w to v’s list.
    adj[v].push_back(w);
}

void Graph::DFSUtil(int v)
{
    // Mark the current node as visited and print it
    visited[v] = true;
    cout << v << " ";

    // Recur for all the vertices adjacent to this vertex
    list<int>::iterator i;
    for (i = adj[v].begin(); i != adj[v].end(); ++i)
        if (!visited[*i])
            DFSUtil(*i);
}

// The function to do DFS traversal. It uses recursive
// DFSUtil()
void Graph::DFS()
{
    // Call the recursive helper function to print DFS
    // traversal starting from all vertices one by one
    for (auto i : adj)
        if (visited[i.first] == false)
            DFSUtil(i.first);
}

// Driver's  Code
int main()
{
    // Create a graph given in the above diagram
    Graph g;
    g.addEdge(0, 1);
    g.addEdge(0, 2);
    g.addEdge(1, 2);
    g.addEdge(2, 0);
    g.addEdge(2, 3);
    g.addEdge(3, 3);

    cout << "Following is Depth First Traversal \n";

    // Function call
    g.DFS();

    return 0;
}

Java

// Java program to print DFS
// traversal from a given graph
import java.io.*;
import java.util.*;

// This class represents a
// directed graph using adjacency
// list representation
class Graph {
    private int V;

    // Array  of lists for
    // Adjacency List Representation
    private LinkedList<Integer> adj[];

    // Constructor
    @SuppressWarnings("unchecked") Graph(int v)
    {
        V = v;
        adj = new LinkedList[v];
        for (int i = 0; i < v; ++i)
            adj[i] = new LinkedList();
    }

    // Function to add an edge into the graph
    void addEdge(int v, int w)
    {
        // Add w to v's list.
        adj[v].add(w);
    }

    // A function used by DFS
    void DFSUtil(int v, boolean visited[])
    {
        // Mark the current node as visited and print it
        visited[v] = true;
        System.out.print(v + " ");

        // Recur for all the vertices adjacent to this
        // vertex
        Iterator<Integer> i = adj[v].listIterator();
        while (i.hasNext()) {
            int n = i.next();
            if (!visited[n])
                DFSUtil(n, visited);
        }
    }

    // The function to do DFS traversal. It uses recursive
    // DFSUtil()
    void DFS()
    {
        // Mark all the vertices as not visited(set as
        // false by default in java)
        boolean visited[] = new boolean[V];

        // Call the recursive helper function to print DFS
        // traversal starting from all vertices one by one
        for (int i = 0; i < V; ++i)
            if (visited[i] == false)
                DFSUtil(i, visited);
    }

    // Driver's Code
    public static void main(String args[])
    {
        Graph g = new Graph(4);

        g.addEdge(0, 1);
        g.addEdge(0, 2);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 3);

        System.out.println(
            "Following is Depth First Traversal");

        // Function call
        g.DFS();
    }
}

Python3

# Python3 program to print DFS traversal
# for complete graph
from collections import defaultdict


# This class represents a directed graph
# using adjacency list representation
class Graph:

    # Constructor
    def __init__(self):

        # Default dictionary to store graph
        self.graph = defaultdict(list)

    # Function to add an edge to graph
    def addEdge(self, u, v):
        self.graph[u].append(v)

    # A function used by DFS
    def DFSUtil(self, v, visited):

        # Mark the current node as visited and print it
        visited.add(v)
        print(v, end=" ")

        # Recur for all the vertices
        # adjacent to this vertex
        for neighbour in self.graph[v]:
            if neighbour not in visited:
                self.DFSUtil(neighbour, visited)

    # The function to do DFS traversal.
    # It uses recursive DFSUtil
    def DFS(self):

        # Create a set to store all visited vertices
        visited = set()

        # Call the recursive helper function
        # to print DFS traversal starting from all
        # vertices one by one
        for vertex in self.graph:
            if vertex not in visited:
                self.DFSUtil(vertex, visited)


# Driver's code
if __name__ == "__main__":
    print("Following is Depth First Traversal")
    g = Graph()
    g.addEdge(0, 1)
    g.addEdge(0, 2)
    g.addEdge(1, 2)
    g.addEdge(2, 0)
    g.addEdge(2, 3)
    g.addEdge(3, 3)

    # Function call
    g.DFS()

C#

// C# program to print DFS
// traversal from a given graph
using System;
using System.Collections.Generic;

// This class represents a
// directed graph using adjacency
// list representation
public class Graph {
    private int V;

    // Array of lists for
    // Adjacency List Representation
    private List<int>[] adj;

    // Constructor
    Graph(int v)
    {
        V = v;
        adj = new List<int>[ v ];
        for (int i = 0; i < v; ++i)
            adj[i] = new List<int>();
    }

    // Function to add an edge into the graph
    void addEdge(int v, int w)
    {
        // Add w to v's list.
        adj[v].Add(w);
    }

    // A function used by DFS
    void DFSUtil(int v, bool[] visited)
    {
        // Mark the current
        // node as visited and print it
        visited[v] = true;
        Console.Write(v + " ");

        // Recur for all the
        // vertices adjacent to this vertex
        foreach(int i in adj[v])
        {
            int n = i;
            if (!visited[n])
                DFSUtil(n, visited);
        }
    }

    // The function to do
    // DFS traversal. It uses recursive DFSUtil()
    void DFS()
    {
        // Mark all the vertices as not visited(set as
        // false by default in java)
        bool[] visited = new bool[V];

        // Call the recursive helper
        // function to print DFS
        // traversal starting from
        // all vertices one by one
        for (int i = 0; i < V; ++i)
            if (visited[i] == false)
                DFSUtil(i, visited);
    }

    // Driver's code
    public static void Main(String[] args)
    {
        Graph g = new Graph(4);

        g.addEdge(0, 1);
        g.addEdge(0, 2);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(2, 3);
        g.addEdge(3, 3);

        Console.WriteLine(
            "Following is Depth First Traversal");

        // Function call
        g.DFS();
    }
}

Javascript

// JavaScript program to print DFS
// traversal from a given graph

// This class represents a
// directed graph using adjacency
// list representation
class Graph 
{
    // Constructor
    constructor(v) {
        this.V = v;
        this.adj = new Array(v).fill([]);
    }

    // Function to Add an edge into the graph
    AddEdge(v, w) {
        
        // Add w to v's list.
        this.adj[v].push(w);
    }

    // A function used by DFS
    DFSUtil(v, visited)
    {       
        // Mark the current
        // node as visited and print it
        visited[v] = true;
        console.log(v + " ");

        // Recur for all the
        // vertices adjacent to this vertex
        for (const n of this.adj[v]) {
            if (!visited[n]) this.DFSUtil(n, visited);
        }
    }

    // The function to do
    // DFS traversal. It uses recursive DFSUtil()
    DFS() 
    {
        // Mark all the vertices as not visited(set as
        var visited = new Array(this.V).fill(false);

        // Call the recursive helper
        // function to print DFS
        // traversal starting from
        // all vertices one by one
        for (var i = 0; i < this.V; ++i)
            if (visited[i] == false) this.DFSUtil(i, visited);
    }
}


// Driver Code
var g = new Graph(4);
g.AddEdge(0, 1);
g.AddEdge(0, 2);
g.AddEdge(1, 2);
g.AddEdge(2, 0);
g.AddEdge(2, 3);
g.AddEdge(3, 3);

console.log("Following is Depth First Traversal");
g.DFS();
Output

Following is Depth First Traversal 
0 1 2 3 

Time complexity: O(V + E), where V is the number of vertices and E is the number of edges in the graph.
Auxiliary Space: O(V), since an extra visited array of size V is required.



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads