# Count single node isolated sub-graphs in a disconnected graph

A disconnected Graph with N vertices and K edges is given. The task is to find the count of singleton sub-graphs. A singleton graph is one with only single vertex.

Examples:

```Input :
Vertices : 6
Edges :    1 2
1 3
5 6
Output : 1
Explanation :  The Graph has 3 components : {1-2-3}, {5-6}, {4}
Out of these, the only component forming singleton graph is {4}.
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The idea is simple for graph given as adjacency list representation. We traverse the list and find the indices(representing a node) with no elements in list, i.e. no connected components.

Below is the representation :

## C++

 `// CPP code to count the singleton sub-graphs ` `// in a disconnected graph ` `#include ` `using` `namespace` `std; ` ` `  `// Function to compute the count ` `int` `compute(vector<``int``> graph[], ``int` `N) ` `{ ` `    ``// Storing intermediate result ` `    ``int` `count = 0; ` ` `  `    ``// Traversing the Nodes ` `    ``for` `(``int` `i = 1; i <= N; i++) ` ` `  `        ``// Singleton component ` `        ``if` `(graph[i].size() == 0) ` `            ``count++;     ` ` `  `    ``// Returning the result ` `    ``return` `count; ` `} ` ` `  `// Driver ` `int` `main() ` `{ ` `    ``// Number of nodes ` `    ``int` `N = 6; ` ` `  `    ``// Adjacency list for edges 1..6 ` `    ``vector<``int``> graph; ` ` `  `    ``// Representing edges ` `    ``graph.push_back(2); ` `    ``graph.push_back(1); ` ` `  `    ``graph.push_back(3); ` `    ``graph.push_back(2); ` ` `  `    ``graph.push_back(6); ` `    ``graph.push_back(5); ` ` `  `    ``cout << compute(graph, N); ` `} `

## Java

 `// Java code to count the singleton sub-graphs  ` `// in a disconnected graph  ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` ` `  `// Function to compute the count  ` `static` `int` `compute(``int` `[]graph, ``int` `N)  ` `{  ` `    ``// Storing intermediate result  ` `    ``int` `count = ``0``;  ` `     `  `    ``// Traversing the Nodes  ` `    ``for` `(``int` `i = ``1``; i < ``7``; i++)  ` `    ``{ ` `        ``// Singleton component  ` `        ``if` `(graph[i] == ``0``)  ` `            ``count++;      ` `    ``} ` `         `  `    ``// Returning the result  ` `    ``return` `count;  ` `}  ` ` `  `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``// Number of nodes  ` `    ``int` `N = ``6``;  ` ` `  `    ``// Adjacency list for edges 1..6  ` `    ``int` `[]graph = ``new` `int``[``7``]; ` `    ``// Representing edges  ` `    ``graph[``1``] = ``2``; ` `    ``graph[``2``] = ``1``; ` `    ``graph[``2``] = ``3``; ` `    ``graph[``3``] = ``2``; ` `    ``graph[``5``] = ``6``; ` `    ``graph[``6``] = ``5``; ` ` `  `    ``System.out.println(compute(graph, N));  ` `} ` `} ` ` `  `// This code is contributed by PrinciRaj1992  `

## Python3

 `# Python code to count the singleton sub-graphs  ` `# in a disconnected graph  ` `  `  `# Function to compute the count  ` `def` `compute(graph, N): ` `    ``# Storing intermediate result  ` `    ``count ``=` `0`  `   `  `    ``# Traversing the Nodes ` `    ``for` `i ``in` `range``(``1``, N``+``1``): ` `   `  `        ``# Singleton component  ` `        ``if` `(``len``(graph[i]) ``=``=` `0``): ` `            ``count ``+``=` `1`     `   `  `    ``# Returning the result  ` `    ``return` `count ` `   `  `# Driver  ` `if` `__name__ ``=``=` `'__main__'``: ` ` `  `    ``# Number of nodes  ` `    ``N ``=` `6`  `   `  `    ``# Adjacency list for edges 1..6  ` `    ``graph ``=` `[[] ``for` `i ``in` `range``(``7``)]  ` `   `  `    ``# Representing edges  ` `    ``graph[``1``].append(``2``)  ` `    ``graph[``2``].append(``1``)  ` `   `  `    ``graph[``2``].append(``3``)  ` `    ``graph[``3``].append(``2``)  ` `   `  `    ``graph[``5``].append(``6``)  ` `    ``graph[``6``].append(``5``)  ` `   `  `    ``print``(compute(graph, N)) `

## C#

 `// C# code to count the singleton sub-graphs  ` `// in a disconnected graph  ` `using` `System; ` ` `  `class` `GFG ` `{ ` ` `  `// Function to compute the count  ` `static` `int` `compute(``int` `[]graph, ``int` `N)  ` `{  ` `    ``// Storing intermediate result  ` `    ``int` `count = 0;  ` `     `  `    ``// Traversing the Nodes  ` `    ``for` `(``int` `i = 1; i < 7; i++)  ` `    ``{ ` `        ``// Singleton component  ` `        ``if` `(graph[i] == 0)  ` `            ``count++;      ` `    ``} ` `         `  `    ``// Returning the result  ` `    ``return` `count;  ` `}  ` ` `  `// Driver Code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``// Number of nodes  ` `    ``int` `N = 6;  ` ` `  `    ``// Adjacency list for edges 1..6  ` `    ``int` `[]graph = ``new` `int``; ` `     `  `    ``// Representing edges  ` `    ``graph = 2; ` `    ``graph = 1; ` `    ``graph = 3; ` `    ``graph = 2; ` `    ``graph = 6; ` `    ``graph = 5; ` ` `  `    ``Console.WriteLine(compute(graph, N));  ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

Output:

```1
```

This article is contributed by Rohit Thapliyal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.