A disconnected Graph with N vertices and K edges is given. The task is to find the count of singleton sub-graphs. A singleton graph is one with only single vertex.

**Examples:**

Input :Vertices : 6 Edges : 1 2 1 3 5 6Output :1Explanation :The Graph has 3 components : {1-2-3}, {5-6}, {4} Out of these, the only component forming singleton graph is {4}.

The idea is simple for graph given as adjacency list representation. We traverse the list and find the indices(representing a node) with no elements in list, i.e. no connected components.

Below is the representation :

## C++

`// CPP code to count the singleton sub-graphs ` `// in a disconnected graph ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to compute the count ` `int` `compute(vector<` `int` `> graph[], ` `int` `N) ` `{ ` ` ` `// Storing intermediate result ` ` ` `int` `count = 0; ` ` ` ` ` `// Traversing the Nodes ` ` ` `for` `(` `int` `i = 1; i <= N; i++) ` ` ` ` ` `// Singleton component ` ` ` `if` `(graph[i].size() == 0) ` ` ` `count++; ` ` ` ` ` `// Returning the result ` ` ` `return` `count; ` `} ` ` ` `// Driver ` `int` `main() ` `{ ` ` ` `// Number of nodes ` ` ` `int` `N = 6; ` ` ` ` ` `// Adjacency list for edges 1..6 ` ` ` `vector<` `int` `> graph[7]; ` ` ` ` ` `// Representing edges ` ` ` `graph[1].push_back(2); ` ` ` `graph[2].push_back(1); ` ` ` ` ` `graph[2].push_back(3); ` ` ` `graph[3].push_back(2); ` ` ` ` ` `graph[5].push_back(6); ` ` ` `graph[6].push_back(5); ` ` ` ` ` `cout << compute(graph, N); ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java code to count the singleton sub-graphs ` `// in a disconnected graph ` `import` `java.util.*; ` ` ` `class` `GFG ` `{ ` ` ` `// Function to compute the count ` `static` `int` `compute(` `int` `[]graph, ` `int` `N) ` `{ ` ` ` `// Storing intermediate result ` ` ` `int` `count = ` `0` `; ` ` ` ` ` `// Traversing the Nodes ` ` ` `for` `(` `int` `i = ` `1` `; i < ` `7` `; i++) ` ` ` `{ ` ` ` `// Singleton component ` ` ` `if` `(graph[i] == ` `0` `) ` ` ` `count++; ` ` ` `} ` ` ` ` ` `// Returning the result ` ` ` `return` `count; ` `} ` ` ` `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` ` ` `// Number of nodes ` ` ` `int` `N = ` `6` `; ` ` ` ` ` `// Adjacency list for edges 1..6 ` ` ` `int` `[]graph = ` `new` `int` `[` `7` `]; ` ` ` `// Representing edges ` ` ` `graph[` `1` `] = ` `2` `; ` ` ` `graph[` `2` `] = ` `1` `; ` ` ` `graph[` `2` `] = ` `3` `; ` ` ` `graph[` `3` `] = ` `2` `; ` ` ` `graph[` `5` `] = ` `6` `; ` ` ` `graph[` `6` `] = ` `5` `; ` ` ` ` ` `System.out.println(compute(graph, N)); ` `} ` `} ` ` ` `// This code is contributed by PrinciRaj1992 ` |

*chevron_right*

*filter_none*

## Python3

`# Python code to count the singleton sub-graphs ` `# in a disconnected graph ` ` ` `# Function to compute the count ` `def` `compute(graph, N): ` ` ` `# Storing intermediate result ` ` ` `count ` `=` `0` ` ` ` ` `# Traversing the Nodes ` ` ` `for` `i ` `in` `range` `(` `1` `, N` `+` `1` `): ` ` ` ` ` `# Singleton component ` ` ` `if` `(` `len` `(graph[i]) ` `=` `=` `0` `): ` ` ` `count ` `+` `=` `1` ` ` ` ` `# Returning the result ` ` ` `return` `count ` ` ` `# Driver ` `if` `__name__ ` `=` `=` `'__main__'` `: ` ` ` ` ` `# Number of nodes ` ` ` `N ` `=` `6` ` ` ` ` `# Adjacency list for edges 1..6 ` ` ` `graph ` `=` `[[] ` `for` `i ` `in` `range` `(` `7` `)] ` ` ` ` ` `# Representing edges ` ` ` `graph[` `1` `].append(` `2` `) ` ` ` `graph[` `2` `].append(` `1` `) ` ` ` ` ` `graph[` `2` `].append(` `3` `) ` ` ` `graph[` `3` `].append(` `2` `) ` ` ` ` ` `graph[` `5` `].append(` `6` `) ` ` ` `graph[` `6` `].append(` `5` `) ` ` ` ` ` `print` `(compute(graph, N)) ` |

*chevron_right*

*filter_none*

## C#

`// C# code to count the singleton sub-graphs ` `// in a disconnected graph ` `using` `System; ` ` ` `class` `GFG ` `{ ` ` ` `// Function to compute the count ` `static` `int` `compute(` `int` `[]graph, ` `int` `N) ` `{ ` ` ` `// Storing intermediate result ` ` ` `int` `count = 0; ` ` ` ` ` `// Traversing the Nodes ` ` ` `for` `(` `int` `i = 1; i < 7; i++) ` ` ` `{ ` ` ` `// Singleton component ` ` ` `if` `(graph[i] == 0) ` ` ` `count++; ` ` ` `} ` ` ` ` ` `// Returning the result ` ` ` `return` `count; ` `} ` ` ` `// Driver Code ` `public` `static` `void` `Main(String[] args) ` `{ ` ` ` `// Number of nodes ` ` ` `int` `N = 6; ` ` ` ` ` `// Adjacency list for edges 1..6 ` ` ` `int` `[]graph = ` `new` `int` `[7]; ` ` ` ` ` `// Representing edges ` ` ` `graph[1] = 2; ` ` ` `graph[2] = 1; ` ` ` `graph[2] = 3; ` ` ` `graph[3] = 2; ` ` ` `graph[5] = 6; ` ` ` `graph[6] = 5; ` ` ` ` ` `Console.WriteLine(compute(graph, N)); ` `} ` `} ` ` ` `// This code is contributed by 29AjayKumar ` |

*chevron_right*

*filter_none*

**Output:**

1

This article is contributed by **Rohit Thapliyal**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.