# Count the nodes in the given tree whose weight is even parity

Given a tree and the weights of all the nodes, the task is to count the number of nodes whose weights are even parity i.e. whether the count of set bits in them is even.

Examples:

Input: Output: 3

Weight Binary Representation Parity
5 0101 Even
10 1010 Even
11 1011 Odd
8 1000 Odd
6 0110 Even

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Perform dfs on the tree and for every node, check if it’s weight is even parity or not. If yes then increment count.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `int` `ans = 0; ` ` `  `vector<``int``> graph; ` `vector<``int``> weight(100); ` ` `  `// Function that returns true if count ` `// of set bits in x is even ` `bool` `isEvenParity(``int` `x) ` `{ ` `    ``// parity will store the ` `    ``// count of set bits ` `    ``int` `parity = 0; ` `    ``while` `(x != 0) { ` `        ``x = x & (x - 1); ` `        ``parity++; ` `    ``} ` ` `  `    ``if` `(parity % 2 == 0) ` `        ``return` `true``; ` `    ``else` `        ``return` `false``; ` `} ` ` `  `// Function to perform dfs ` `void` `dfs(``int` `node, ``int` `parent) ` `{ ` `    ``// If weight of the current ` `    ``// node has even parity ` `    ``if` `(isEvenParity(weight[node])) ` `        ``ans += 1; ` ` `  `    ``for` `(``int` `to : graph[node]) { ` `        ``if` `(to == parent) ` `            ``continue``; ` `        ``dfs(to, node); ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``// Weights of the node ` `    ``weight = 5; ` `    ``weight = 10; ` `    ``weight = 11; ` `    ``weight = 8; ` `    ``weight = 6; ` ` `  `    ``// Edges of the tree ` `    ``graph.push_back(2); ` `    ``graph.push_back(3); ` `    ``graph.push_back(4); ` `    ``graph.push_back(5); ` ` `  `    ``dfs(1, 1); ` ` `  `    ``cout << ans; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach  ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` ` `  `static` `int` `ans = ``0``;  ` ` `  `static` `Vector> graph = ``new` `Vector>();  ` `static` `Vector weight = ``new` `Vector();  ` ` `  `// Function that returns true if count  ` `// of set bits in x is even  ` `static` `boolean` `isEvenParity(``int` `x)  ` `{  ` `    ``// parity will store the  ` `    ``// count of set bits  ` `    ``int` `parity = ``0``;  ` `    ``while` `(x != ``0``)  ` `    ``{  ` `        ``x = x & (x - ``1``);  ` `        ``parity++;  ` `    ``}  ` ` `  `    ``if` `(parity % ``2` `== ``0``)  ` `        ``return` `true``;  ` `    ``else` `        ``return` `false``;  ` `}  ` ` `  `// Function to perform dfs  ` `static` `void` `dfs(``int` `node, ``int` `parent)  ` `{  ` `    ``// If weight of the current  ` `    ``// node has even parity  ` `    ``if` `(isEvenParity(weight.get(node) )) ` `        ``ans += ``1``;  ` ` `  `    ``for` `(``int` `i = ``0``; i < graph.get(node).size(); i++)  ` `    ``{  ` `        ``if` `(graph.get(node).get(i) == parent)  ` `            ``continue``;  ` `        ``dfs(graph.get(node).get(i) , node);  ` `    ``}  ` `}  ` ` `  `// Driver code  ` `public` `static` `void` `main(String args[]) ` `{  ` `    ``// Weights of the node  ` `    ``weight.add( ``0``);  ` `    ``weight.add( ``5``);  ` `    ``weight.add( ``10``);;  ` `    ``weight.add( ``11``);;  ` `    ``weight.add( ``8``);  ` `    ``weight.add( ``6``);  ` ` `  `    ``for``(``int` `i=``0``;i<``100``;i++) ` `    ``graph.add(``new` `Vector()); ` `     `  `    ``// Edges of the tree  ` `    ``graph.get(``1``).add(``2``);  ` `    ``graph.get(``2``).add(``3``);  ` `    ``graph.get(``2``).add(``4``);  ` `    ``graph.get(``1``).add(``5``);  ` ` `  `    ``dfs(``1``, ``1``);  ` ` `  `    ``System.out.println( ans );  ` ` `  `} ` `} ` ` `  `// This code is contributed by Arnab Kundu `

## Python3

 `# Python3 implementation of the approach ` `ans ``=` `0` ` `  `graph ``=` `[[] ``for` `i ``in` `range``(``100``)] ` `weight ``=` `[``0``]``*``100` ` `  `# Function that returns True if count ` `# of set bits in x is even ` `def` `isEvenParity(x): ` ` `  `    ``# parity will store the ` `    ``# count of set bits ` `    ``parity ``=` `0` `    ``while` `(x !``=` `0``): ` `        ``x ``=` `x & (x ``-` `1``) ` `        ``parity ``+``=` `1` `         `  `    ``if` `(parity ``%` `2` `=``=` `0``): ` `        ``return` `True` `    ``else``: ` `        ``return` `False` ` `  `# Function to perform dfs ` `def` `dfs(node, parent): ` `    ``global` `ans ` `     `  `    ``# If weight of the current ` `    ``# node has even parity ` `    ``if` `(isEvenParity(weight[node])): ` `        ``ans ``+``=` `1` `     `  `    ``for` `to ``in` `graph[node]: ` `        ``if` `(to ``=``=` `parent): ` `            ``continue` `        ``dfs(to, node) ` ` `  `# Driver code ` ` `  `# Weights of the node ` `weight[``1``] ``=` `5` `weight[``2``] ``=` `10` `weight[``3``] ``=` `11` `weight[``4``] ``=` `8` `weight[``5``] ``=` `6` ` `  `# Edges of the tree ` `graph[``1``].append(``2``) ` `graph[``2``].append(``3``) ` `graph[``2``].append(``4``) ` `graph[``1``].append(``5``) ` ` `  `dfs(``1``, ``1``) ` `print``(ans) ` ` `  `# This code is contributed by SHUBHAMSINGH10 `

## C#

 `// C# implementation of the approach  ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG ` `{ ` ` `  `static` `int` `ans = 0;  ` ` `  `static` `List> graph = ``new` `List>(); ` `static` `List<``int``> weight = ``new` `List<``int``>(); ` ` `  `// Function that returns true if count  ` `// of set bits in x is even  ` `static` `bool` `isEvenParity(``int` `x)  ` `{  ` `    ``// parity will store the  ` `    ``// count of set bits  ` `    ``int` `parity = 0;  ` `    ``while` `(x != 0)  ` `    ``{  ` `        ``x = x & (x - 1);  ` `        ``parity++;  ` `    ``}  ` ` `  `    ``if` `(parity % 2 == 0)  ` `        ``return` `true``;  ` `    ``else` `        ``return` `false``;  ` `}  ` ` `  `// Function to perform dfs  ` `static` `void` `dfs(``int` `node, ``int` `parent)  ` `{  ` `    ``// If weight of the current  ` `    ``// node has even parity  ` `    ``if` `(isEvenParity(weight[node])) ` `        ``ans += 1;  ` ` `  `    ``for` `(``int` `i = 0; i < graph[node].Count; i++)  ` `    ``{  ` `        ``if` `(graph[node][i] == parent)  ` `            ``continue``;  ` `        ``dfs(graph[node][i] , node);  ` `    ``}  ` `}  ` ` `  `// Driver code  ` `static` `void` `Main() ` `{  ` `    ``// Weights of the node  ` `    ``weight.Add(0);  ` `    ``weight.Add(5);  ` `    ``weight.Add(10); ` `    ``weight.Add(11); ` `    ``weight.Add(8);  ` `    ``weight.Add(6);  ` ` `  `    ``for``(``int` `i = 0; i < 100; i++) ` `    ``graph.Add(``new` `List<``int``>()); ` `     `  `    ``// Edges of the tree  ` `    ``graph.Add(2);  ` `    ``graph.Add(3);  ` `    ``graph.Add(4);  ` `    ``graph.Add(5);  ` ` `  `    ``dfs(1, 1);  ` ` `  `    ``Console.WriteLine( ans );  ` `} ` `} ` ` `  `// This code is contributed by mits `

Output:

```3
```

Complexity Analysis:

• Time Complexity: O(N).
In DFS, every node of the tree is processed once and hence the complexity due to the DFS is O(N) for N nodes in the tree. Therefore, the time complexity is O(N).
• Auxiliary Space: O(1).
Any extra space is not required, so the space complexity is constant.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.