Related Articles

Related Articles

Count of pairs in an array such that the highest power of 2 that divides their product is 1
  • Last Updated : 05 Nov, 2019

Given an array arr[] of N positive integers. The task is to find the count of pairs (arr[i], arr[j]) such that the maximum power of 2 that divides arr[i] * arr[j] is 1.

Examples:

Input: arr[] = {3, 5, 2, 8}
Output: 3
(3, 2), (5, 2) and (3, 5) are the only valid pairs.
Since the power of 2 that divides 3 * 2 = 6 is 1,
5 * 2 = 10 is 1 and 3 * 5 = 15 is 0.

Input: arr[] = {4, 2, 7, 11, 14, 15, 18}
Output: 12

Approach: As the maximum power of 2 that divides arr[i] * arr[j] is at max 1, it means that if P is the product then it must either be odd or 2 is the only even factor of P.
It implies that both arr[i] and arr[j] must be odd or exactly one of them is even and 2 is the only even factor of this number.
If odd is the count of odd numbers and even is the count of even numbers such that 2 is the only even factor of that number then the answer will be odd * even + odd * (odd – 1) / 2.



Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the count of valid pairs
int cntPairs(int a[], int n)
{
  
    // To store the count of odd numbers and
    // the count of even numbers such that 2
    // is the only even factor of that number
    int odd = 0, even = 0;
  
    for (int i = 0; i < n; i++) {
  
        // If current number is odd
        if (a[i] % 2 == 1)
            odd++;
  
        // If current number is even and 2
        // is the only even factor of it
        else if ((a[i] / 2) % 2 == 1)
            even++;
    }
  
    // Calculate total number of valid pairs
    int ans = odd * even + (odd * (odd - 1)) / 2;
  
    return ans;
}
  
// Driver code
int main()
{
  
    int a[] = { 4, 2, 7, 11, 14, 15, 18 };
    int n = sizeof(a) / sizeof(a[0]);
  
    cout << cntPairs(a, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG 
{
  
// Function to return the count of valid pairs
static int cntPairs(int a[], int n)
{
  
    // To store the count of odd numbers and
    // the count of even numbers such that 2
    // is the only even factor of that number
    int odd = 0, even = 0;
  
    for (int i = 0; i < n; i++) 
    {
  
        // If current number is odd
        if (a[i] % 2 == 1)
            odd++;
  
        // If current number is even and 2
        // is the only even factor of it
        else if ((a[i] / 2) % 2 == 1)
            even++;
    }
  
    // Calculate total number of valid pairs
    int ans = odd * even + (odd * (odd - 1)) / 2;
  
    return ans;
}
  
// Driver code
public static void main(String []args) 
{
    int a[] = { 4, 2, 7, 11, 14, 15, 18 };
    int n = a.length;
  
    System.out.println(cntPairs(a, n));
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the count of valid pairs 
def cntPairs(a, n) : 
  
    # To store the count of odd numbers and 
    # the count of even numbers such that 2 
    # is the only even factor of that number 
    odd = 0; even = 0
  
    for i in range(n) :
  
        # If current number is odd 
        if (a[i] % 2 == 1) :
            odd += 1
  
        # If current number is even and 2 
        # is the only even factor of it 
        elif ((a[i] / 2) % 2 == 1) :
            even += 1
      
    # Calculate total number of valid pairs 
    ans = odd * even + (odd * (odd - 1)) // 2
  
    return ans; 
  
# Driver code 
if __name__ == "__main__" :
  
    a = [ 4, 2, 7, 11, 14, 15, 18 ]; 
    n = len(a); 
  
    print(cntPairs(a, n)); 
      
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
      
class GFG 
{
  
// Function to return the count of valid pairs
static int cntPairs(int []a, int n)
{
  
    // To store the count of odd numbers and
    // the count of even numbers such that 2
    // is the only even factor of that number
    int odd = 0, even = 0;
  
    for (int i = 0; i < n; i++) 
    {
  
        // If current number is odd
        if (a[i] % 2 == 1)
            odd++;
  
        // If current number is even and 2
        // is the only even factor of it
        else if ((a[i] / 2) % 2 == 1)
            even++;
    }
  
    // Calculate total number of valid pairs
    int ans = odd * even + (odd * (odd - 1)) / 2;
  
    return ans;
}
  
// Driver code
public static void Main(String []args) 
{
    int []a = { 4, 2, 7, 11, 14, 15, 18 };
    int n = a.Length;
  
    Console.WriteLine(cntPairs(a, n));
}
}
  
// This code is contributed by Ajay KUmar

chevron_right


Output:

12

Time Complexity: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :