Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count of triplets (a, b, c) in the Array such that a divides b and b divides c

  • Difficulty Level : Easy
  • Last Updated : 09 Apr, 2021

Given an array arr[] of positive integers of size N, the task is to count number of triplets in the array such that a[i] divides a[j] and a[j] divides a[k] and i < j < k.
Examples:
 

Input: arr[] = {1, 2, 3, 4, 5, 6} 
Output:
Explanation: 
The triplets are: (1, 2, 4), (1, 2, 6), (1, 3, 6).
Input: arr[] = {1, 2, 2} 
Output:
Explanation: 
The triplet is (1, 2, 2) 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



Naive Approach: To solve the problem mentioned above, we will try to implement brute force solution. Traverse the array for all three numbers a[i], a[j] and a[k] and count the number of triplets which satisfies the given condition.
Time complexity: O(N3
Auxiliary Space complexity: O(1)
Efficient Approach: To optimize the above method we can traverse the array for the middle element from index 1 to n-2 and for every middle element we can traverse the left array for a[i] and count number of possible a[i]’s such that a[i] divides a[j]. Similarly, we can traverse in the right array and do the same thing for a[k].
Below is the implementation of the above approach: 
 

C++




// C++ program to find count of triplets
// (a, b, c) in the Array such that
// a divides b and b divides c
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count triplets
int getCount(int arr[], int n)
{
    int count = 0;
 
    // Iterate for middle element
    for (int j = 1; j < n - 1; j++) {
        int p = 0, q = 0;
 
        // Iterate left array for a[i]
        for (int i = 0; i < j; i++) {
 
            if (arr[j] % arr[i] == 0)
                p++;
        }
 
        // Iterate right array for a[k]
        for (int k = j + 1; k < n; k++) {
 
            if (arr[k] % arr[j] == 0)
                q++;
        }
 
        count += p * q;
    }
    // return the final result
    return count;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 2 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << getCount(arr, N) << endl;
 
    return 0;
}

Java




// Java program to find count of triplets
// (a, b, c) in the Array such that
// a divides b and b divides c
import java.io.*;
import java.util.*;
 
class GFG {
     
// Function to count triplets
static int getCount(int arr[], int n)
{
    int count = 0;
 
    // Iterate for middle element
    for(int j = 1; j < n - 1; j++)
    {
       int p = 0, q = 0;
        
       // Iterate left array for a[i]
       for(int i = 0; i < j; i++)
       {
          if (arr[j] % arr[i] == 0)
              p++;
       }
        
       // Iterate right array for a[k]
       for(int k = j + 1; k < n; k++)
       {
          if (arr[k] % arr[j] == 0)
              q++;
       }
        
       count += p * q;
    }
     
    // return the final result
    return count;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 2 };
    int N = arr.length;
     
    System.out.println(getCount(arr, N));
}
}
 
// This code is contributed by coder001

Python3




# Python3 program to find the count of
# triplets (a, b, c) in the Array such
# that a divides b and b divides c
 
# Function to count triplets
def getCount(arr, n):
    count = 0
 
    # Iterate for middle element
    for j in range(1, n - 1):
        p, q = 0, 0
 
        # Iterate left array for a[i]
        for i in range(j):
 
            if (arr[j] % arr[i] == 0):
                p += 1
 
        # Iterate right array for a[k]
        for k in range(j + 1, n):
 
            if (arr[k] % arr[j] == 0):
                q += 1
 
        count += p * q
         
    # Return the final result
    return count
 
# Driver code
if __name__ == '__main__':
     
    arr = [ 1, 2, 2 ]
    N = len(arr)
     
    print(getCount(arr, N))
     
# This code is contributed by mohit kumar 29   

C#




// C# program to find count of triplets
// (a, b, c) in the Array such that
// a divides b and b divides c
using System;
 
class GFG{
 
// Function to count triplets
public static int getCount(int[] arr, int n)
{
    int count = 0;
 
    // Iterate for middle element
    for(int j = 1; j < n - 1; j++)
    {
        int p = 0, q = 0;
 
        // Iterate left array for a[i]
        for(int i = 0; i < j; i++)
        {
            if (arr[j] % arr[i] == 0)
                p++;
        }
 
        // Iterate right array for a[k]
        for(int k = j + 1; k < n; k++)
        {
            if (arr[k] % arr[j] == 0)
                q++;
        }
        count += p * q;
    }
 
    // return the final result
    return count;
}
 
// Driver code
public static void Main()
{
    int[] arr = { 1, 2, 2 };
    int N = arr.Length;
 
    Console.WriteLine(getCount(arr, N));
}
}
 
// This code is contributed by jrishabh99

Javascript




<script>
 
// Javascript program to find count of triplets
// (a, b, c) in the Array such that
// a divides b and b divides c
 
// Function to count triplets
function getCount(arr, n)
{
    var count = 0;
 
    // Iterate for middle element
    for(var j = 1; j < n - 1; j++)
    {
       var p = 0, q = 0;
        
       // Iterate left array for a[i]
       for(var i = 0; i < j; i++)
       {
          if (arr[j] % arr[i] == 0)
              p++;
       }
        
       // Iterate right array for a[k]
       for(var k = j + 1; k < n; k++)
       {
          if (arr[k] % arr[j] == 0)
              q++;
       }
        
       count += p * q;
    }
     
    // return the final result
    return count;
}
 
// Driver Code
var arr = [ 1, 2, 2 ];
var N = arr.length;
 
document.write(getCount(arr, N));
 
// This code is contributed by Khushboogoyal499
     
</script>
Output: 
1

Time complexity: O(N2)
Auxiliary Space complexity: O(1)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!