# Count of pairs in an array such that the highest power of 2 that divides their product is 1

Given an array arr[] of N positive integers. The task is to find the count of pairs (arr[i], arr[j]) such that the maximum power of 2 that divides arr[i] * arr[j] is 1.

Examples:

Input: arr[] = {3, 5, 2, 8}
Output: 3
(3, 2), (5, 2) and (3, 5) are the only valid pairs.
Since the power of 2 that divides 3 * 2 = 6 is 1,
5 * 2 = 10 is 1 and 3 * 5 = 15 is 0.

Input: arr[] = {4, 2, 7, 11, 14, 15, 18}
Output: 12

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: As the maximum power of 2 that divides arr[i] * arr[j] is at max 1, it means that if P is the product then it must either be odd or 2 is the only even factor of P.
It implies that both arr[i] and arr[j] must be odd or exactly one of them is even and 2 is the only even factor of this number.
If odd is the count of odd numbers and even is the count of even numbers such that 2 is the only even factor of that number then the answer will be odd * even + odd * (odd – 1) / 2.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the count of valid pairs ` `int` `cntPairs(``int` `a[], ``int` `n) ` `{ ` ` `  `    ``// To store the count of odd numbers and ` `    ``// the count of even numbers such that 2 ` `    ``// is the only even factor of that number ` `    ``int` `odd = 0, even = 0; ` ` `  `    ``for` `(``int` `i = 0; i < n; i++) { ` ` `  `        ``// If current number is odd ` `        ``if` `(a[i] % 2 == 1) ` `            ``odd++; ` ` `  `        ``// If current number is even and 2 ` `        ``// is the only even factor of it ` `        ``else` `if` `((a[i] / 2) % 2 == 1) ` `            ``even++; ` `    ``} ` ` `  `    ``// Calculate total number of valid pairs ` `    ``int` `ans = odd * even + (odd * (odd - 1)) / 2; ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` ` `  `    ``int` `a[] = { 4, 2, 7, 11, 14, 15, 18 }; ` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a); ` ` `  `    ``cout << cntPairs(a, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `class` `GFG  ` `{ ` ` `  `// Function to return the count of valid pairs ` `static` `int` `cntPairs(``int` `a[], ``int` `n) ` `{ ` ` `  `    ``// To store the count of odd numbers and ` `    ``// the count of even numbers such that 2 ` `    ``// is the only even factor of that number ` `    ``int` `odd = ``0``, even = ``0``; ` ` `  `    ``for` `(``int` `i = ``0``; i < n; i++)  ` `    ``{ ` ` `  `        ``// If current number is odd ` `        ``if` `(a[i] % ``2` `== ``1``) ` `            ``odd++; ` ` `  `        ``// If current number is even and 2 ` `        ``// is the only even factor of it ` `        ``else` `if` `((a[i] / ``2``) % ``2` `== ``1``) ` `            ``even++; ` `    ``} ` ` `  `    ``// Calculate total number of valid pairs ` `    ``int` `ans = odd * even + (odd * (odd - ``1``)) / ``2``; ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String []args)  ` `{ ` `    ``int` `a[] = { ``4``, ``2``, ``7``, ``11``, ``14``, ``15``, ``18` `}; ` `    ``int` `n = a.length; ` ` `  `    ``System.out.println(cntPairs(a, n)); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# Function to return the count of valid pairs  ` `def` `cntPairs(a, n) :  ` ` `  `    ``# To store the count of odd numbers and  ` `    ``# the count of even numbers such that 2  ` `    ``# is the only even factor of that number  ` `    ``odd ``=` `0``; even ``=` `0``;  ` ` `  `    ``for` `i ``in` `range``(n) : ` ` `  `        ``# If current number is odd  ` `        ``if` `(a[i] ``%` `2` `=``=` `1``) : ` `            ``odd ``+``=` `1``;  ` ` `  `        ``# If current number is even and 2  ` `        ``# is the only even factor of it  ` `        ``elif` `((a[i] ``/` `2``) ``%` `2` `=``=` `1``) : ` `            ``even ``+``=` `1``;  ` `     `  `    ``# Calculate total number of valid pairs  ` `    ``ans ``=` `odd ``*` `even ``+` `(odd ``*` `(odd ``-` `1``)) ``/``/` `2``;  ` ` `  `    ``return` `ans;  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `: ` ` `  `    ``a ``=` `[ ``4``, ``2``, ``7``, ``11``, ``14``, ``15``, ``18` `];  ` `    ``n ``=` `len``(a);  ` ` `  `    ``print``(cntPairs(a, n));  ` `     `  `# This code is contributed by AnkitRai01 `

## C#

 `// C# implementation of the approach ` `using` `System; ` `     `  `class` `GFG  ` `{ ` ` `  `// Function to return the count of valid pairs ` `static` `int` `cntPairs(``int` `[]a, ``int` `n) ` `{ ` ` `  `    ``// To store the count of odd numbers and ` `    ``// the count of even numbers such that 2 ` `    ``// is the only even factor of that number ` `    ``int` `odd = 0, even = 0; ` ` `  `    ``for` `(``int` `i = 0; i < n; i++)  ` `    ``{ ` ` `  `        ``// If current number is odd ` `        ``if` `(a[i] % 2 == 1) ` `            ``odd++; ` ` `  `        ``// If current number is even and 2 ` `        ``// is the only even factor of it ` `        ``else` `if` `((a[i] / 2) % 2 == 1) ` `            ``even++; ` `    ``} ` ` `  `    ``// Calculate total number of valid pairs ` `    ``int` `ans = odd * even + (odd * (odd - 1)) / 2; ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String []args)  ` `{ ` `    ``int` `[]a = { 4, 2, 7, 11, 14, 15, 18 }; ` `    ``int` `n = a.Length; ` ` `  `    ``Console.WriteLine(cntPairs(a, n)); ` `} ` `} ` ` `  `// This code is contributed by Ajay KUmar `

Output:

```12
```

Time Complexity: O(N)

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : AnkitRai01, 29AjayKumar