# Count common prime factors of two numbers

• Difficulty Level : Medium
• Last Updated : 10 May, 2021

Given two integer and , the task is to find the count of common factors of two numbers where factors are prime.
Examples:

Input: A = 6, B = 12
Output:
2 and 3 are the only common prime divisors of 6 and 12
Input: A = 4, B = 8
Output:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Naive Approach: Iterate from 1 to min(A, B) and check whether i is prime and a factor of both A and B, if yes then increment the counter.
Efficient Approach is to do following:

1. Find Greatest Common Divisor (gcd) of the given numbers.
2. Find prime factors of the GCD.

Below is the implementation of the above approach:

## C++

 `// CPP program to count common prime factors``// of a and b.``#include ``using` `namespace` `std;` `// A function to count all prime factors of``// a given number x``int` `countPrimeFactors(``int` `x)``{``    ``int` `res = 0;``    ``if` `(x % 2 == 0) {``        ``res++;` `        ``// Print the number of 2s that divide x``        ``while` `(x % 2 == 0)``            ``x = x / 2;``    ``}` `    ``// x must be odd at this point.  So we``    ``// can skip one element (Note i = i +2)``    ``for` `(``int` `i = 3; i <= ``sqrt``(x); i = i + 2) {``        ``if` `(x % i == 0) {` `            ``// While i divides x, print i and``            ``// divide x``            ``res++;``            ``while` `(x % i == 0)``                ``x = x / i;``        ``}``    ``}` `    ``// This condition is to handle the case``    ``// when x is a prime number greater than 2``    ``if` `(x > 2)``        ``res++;``    ``return` `res;``}` `// Count of common prime factors``int` `countCommonPrimeFactors(``int` `a, ``int` `b)``{``    ``// Get the GCD of the given numbers``    ``int` `gcd = __gcd(a, b);` `    ``// Count prime factors in GCD``    ``return` `countPrimeFactors(gcd);``}` `// Driver code``int` `main()``{``    ``int` `a = 6, b = 12;``    ``cout << countCommonPrimeFactors(a, b);``    ``return` `0;``}`

## Java

 `// Java  program to count common prime factors`` ``// of a and b.` `import` `java.io.*;` `class` `GFG {``    ``// Recursive function to return gcd of a and b``    ``static` `int` `__gcd(``int` `a, ``int` `b)``    ``{``        ``// Everything divides 0 ``        ``if` `(a == ``0``)``          ``return` `b;``        ``if` `(b == ``0``)``          ``return` `a;``       ` `        ``// base case``        ``if` `(a == b)``            ``return` `a;``       ` `        ``// a is greater``        ``if` `(a > b)``            ``return` `__gcd(a-b, b);``        ``return` `__gcd(a, b-a);``    ``}``// A function to count all prime factors of``// a given number x`` ``static` `int` `countPrimeFactors(``int` `x)``{``    ``int` `res = ``0``;``    ``if` `(x % ``2` `== ``0``) {``        ``res++;` `        ``// Print the number of 2s that divide x``        ``while` `(x % ``2` `== ``0``)``            ``x = x / ``2``;``    ``}` `    ``// x must be odd at this point. So we``    ``// can skip one element (Note i = i +2)``    ``for` `(``int` `i = ``3``; i <= Math.sqrt(x); i = i + ``2``) {``        ``if` `(x % i == ``0``) {` `            ``// While i divides x, print i and``            ``// divide x``            ``res++;``            ``while` `(x % i == ``0``)``                ``x = x / i;``        ``}``    ``}` `    ``// This condition is to handle the case``    ``// when x is a prime number greater than 2``    ``if` `(x > ``2``)``        ``res++;``    ``return` `res;``}` `// Count of common prime factors``static` `int` `countCommonPrimeFactors(``int` `a, ``int` `b)``{``    ``// Get the GCD of the given numbers``    ``int` `gcd = __gcd(a, b);` `    ``// Count prime factors in GCD``    ``return` `countPrimeFactors(gcd);``}` `// Driver code`  `    ``public` `static` `void` `main (String[] args) {``    ``int` `a = ``6``, b = ``12``;``    ``System.out.println(countCommonPrimeFactors(a, b));``    ``}``}``// This code is contributed by inder_verma..`

## Python3

 `# Python 3 program to count common prime``# factors of a and b.``from` `math ``import` `sqrt,gcd` `# A function to count all prime``# factors of a given number x``def` `countPrimeFactors(x):``    ``res ``=` `0``    ``if` `(x ``%` `2` `=``=` `0``):``        ``res ``+``=` `1` `        ``# Print the number of 2s that divide x``        ``while` `(x ``%` `2` `=``=` `0``):``            ``x ``=` `x ``/` `2` `    ``# x must be odd at this point. So we``    ``# can skip one element (Note i = i +2)``    ``k ``=` `int``(sqrt(x)) ``+` `1``    ``for` `i ``in` `range``(``3``, k, ``2``):``        ``if` `(x ``%` `i ``=``=` `0``):``            ` `            ``# While i divides x, print i``            ``# and divide x``            ``res ``+``=` `1``            ``while` `(x ``%` `i ``=``=` `0``):``                ``x ``=` `x ``/` `i``    ` `    ``# This condition is to handle the``    ``# case when x is a prime number``    ``# greater than 2``    ``if` `(x > ``2``):``        ``res ``+``=` `1``    ``return` `res` `# Count of common prime factors``def` `countCommonPrimeFactors(a, b):``    ` `    ``# Get the GCD of the given numbers``    ``gcd__ ``=` `gcd(a, b)` `    ``# Count prime factors in GCD``    ``return` `countPrimeFactors(gcd__)` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ``a ``=` `6``    ``b ``=` `12``    ``print``(countCommonPrimeFactors(a, b))``    ` `# This code is contributed by``# Surendra_Gangwar`

## C#

 `// C# program to count common prime factors``// of a and b.` `using` `System ;` `class` `GFG {``    ``// Recursive function to return gcd of a and b``    ``static` `int` `__gcd(``int` `a, ``int` `b)``    ``{``        ``// Everything divides 0``        ``if` `(a == 0)``        ``return` `b;``        ``if` `(b == 0)``        ``return` `a;``        ` `        ``// base case``        ``if` `(a == b)``            ``return` `a;``        ` `        ``// a is greater``        ``if` `(a > b)``            ``return` `__gcd(a-b, b);``        ``return` `__gcd(a, b-a);``    ``}``    ``// A function to count all prime factors of``    ``// a given number x``    ``static` `int` `countPrimeFactors(``int` `x)``    ``{``        ``int` `res = 0;``        ``if` `(x % 2 == 0) {``            ``res++;``    ` `            ``// Print the number of 2s that divide x``            ``while` `(x % 2 == 0)``                ``x = x / 2;``        ``}``    ` `        ``// x must be odd at this point. So we``        ``// can skip one element (Note i = i +2)``        ``for` `(``int` `i = 3; i <= Math.Sqrt(x); i = i + 2) {``            ``if` `(x % i == 0) {``    ` `                ``// While i divides x, print i and``                ``// divide x``                ``res++;``                ``while` `(x % i == 0)``                    ``x = x / i;``            ``}``        ``}``    ` `        ``// This condition is to handle the case``        ``// when x is a prime number greater than 2``        ``if` `(x > 2)``            ``res++;``        ``return` `res;``    ``}``    ` `    ``// Count of common prime factors``    ``static` `int` `countCommonPrimeFactors(``int` `a, ``int` `b)``    ``{``        ``// Get the GCD of the given numbers``        ``int` `gcd = __gcd(a, b);``    ` `        ``// Count prime factors in GCD``        ``return` `countPrimeFactors(gcd);``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `Main() {``    ``int` `a = 6, b = 12;``    ` `    ``Console.WriteLine(countCommonPrimeFactors(a, b));``    ``}``    ``// This code is contributed by Ryuga``}`

## PHP

 ` ``\$b``)``        ``return` `__gcd((``\$a` `- ``\$b``), ``\$b``);``    ``return` `__gcd(``\$a``, (``\$b` `- ``\$a``));``}` `// A function to count all prime``// factors of a given number x``function` `countPrimeFactors(``\$x``)``{``    ``\$res` `= 0;``    ``if` `(``\$x` `% 2 == 0)``    ``{``        ``\$res``++;` `        ``// Print the number of 2s that``        ``// divide x``        ``while` `(``\$x` `% 2 == 0)``            ``\$x` `= ``\$x` `/ 2;``    ``}` `    ``// x must be odd at this point. So we``    ``// can skip one element (Note i = i +2)``    ``for` `(``\$i` `= 3; ``\$i` `<= sqrt(``\$x``); ``\$i` `= ``\$i` `+ 2)``    ``{``        ``if` `(``\$x` `% ``\$i` `== 0)``        ``{` `            ``// While i divides x, print i``            ``// and divide x``            ``\$res``++;``            ``while` `(``\$x` `% ``\$i` `== 0)``                ``\$x` `= ``\$x` `/ ``\$i``;``        ``}``    ``}` `    ``// This condition is to handle the case``    ``// when x is a prime number greater than 2``    ``if` `(``\$x` `> 2)``        ``\$res``++;``    ``return` `\$res``;``}` `// Count of common prime factors``function` `countCommonPrimeFactors(``\$a``, ``\$b``)``{``    ``// Get the GCD of the given numbers``    ``\$gcd` `= __gcd(``\$a``, ``\$b``);` `    ``// Count prime factors in GCD``    ``return` `countPrimeFactors(``\$gcd``);``}` `// Driver code``\$a` `= 6;``\$b` `= 12;` `echo` `(countCommonPrimeFactors(``\$a``, ``\$b``));` `// This code is contributed by akt_mit..``?>`

## Javascript

 ``
Output:
`2`

If there are multiple queries for counting common divisors, we can further optimize above code using Prime Factorization using Sieve O(log n) for multiple queries

My Personal Notes arrow_drop_up