# Convert BST to Min Heap

Given a binary search tree which is also a complete binary tree. The problem is to convert the given BST into a Min Heap with the condition that all the values in the left subtree of a node should be less than all the values in the right subtree of the node. This condition is applied on all the nodes in the so converted Min Heap.

Examples:

```Input :          4
/   \
2     6
/  \   /  \
1   3  5    7

Output :        1
/   \
2     5
/  \   /  \
3   4  6    7

The given BST has been transformed into a
Min Heap.
All the nodes in the Min Heap satisfies the given
condition, that is, values in the left subtree of
a node should be less than the values in the right
subtree of the node.
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

1. Create an array arr[] of size n, where n is the number of nodes in the given BST.
2. Perform the inorder traversal of the BST and copy the node values in the arr[] in sorted order.
3. Now perform the preorder traversal of the tree.
4. While traversing the root during the preorder traversal, one by one copy the values from the array arr[] to the nodes.

## C++

 `// C++ implementation to convert the given ` `// BST to Min Heap ` `#include ` `using` `namespace` `std; ` ` `  `// structure of a node of BST ` `struct` `Node ` `{ ` `    ``int` `data; ` `    ``Node *left, *right; ` `}; ` ` `  `/* Helper function that allocates a new node ` `   ``with the given data and NULL left and right ` `   ``pointers. */` `struct` `Node* getNode(``int` `data) ` `{ ` `    ``struct` `Node *newNode = ``new` `Node; ` `    ``newNode->data = data; ` `    ``newNode->left = newNode->right = NULL; ` `    ``return` `newNode; ` `} ` ` `  `// function prototype for preorder traversal ` `// of the given tree ` `void` `preorderTraversal(Node*); ` ` `  `// function for the inorder traversal of the tree ` `// so as to store the node values in 'arr' in ` `// sorted order ` `void` `inorderTraversal(Node *root, vector<``int``>& arr) ` `{ ` `    ``if` `(root == NULL) ` `        ``return``; ` ` `  `    ``// first recur on left subtree ` `    ``inorderTraversal(root->left, arr); ` ` `  `    ``// then copy the data of the node ` `    ``arr.push_back(root->data); ` ` `  `    ``// now recur for right subtree ` `    ``inorderTraversal(root->right, arr); ` `} ` ` `  `// function to convert the given BST to MIN HEAP ` `// performs preorder traversal of the tree ` `void` `BSTToMinHeap(Node *root, vector<``int``> arr, ``int` `*i) ` `{ ` `    ``if` `(root == NULL) ` `        ``return``; ` ` `  `    ``// first copy data at index 'i' of 'arr' to ` `    ``// the node ` `    ``root->data = arr[++*i]; ` ` `  `    ``// then recur on left subtree ` `    ``BSTToMinHeap(root->left, arr, i); ` ` `  `    ``// now recur on right subtree ` `    ``BSTToMinHeap(root->right, arr, i); ` `} ` ` `  `// utility function to convert the given BST to ` `// MIN HEAP ` `void` `convertToMinHeapUtil(Node *root) ` `{ ` `    ``// vector to store the data of all the ` `    ``// nodes of the BST ` `    ``vector<``int``> arr; ` `    ``int` `i = -1; ` ` `  `    ``// inorder traversal to populate 'arr' ` `    ``inorderTraversal(root, arr); ` ` `  `    ``// BST to MIN HEAP conversion ` `    ``BSTToMinHeap(root, arr, &i); ` `} ` ` `  `// function for the preorder traversal of the tree ` `void` `preorderTraversal(Node *root) ` `{ ` `    ``if` `(!root) ` `        ``return``; ` ` `  `    ``// first print the root's data ` `    ``cout << root->data << ``" "``; ` ` `  `    ``// then recur on left subtree ` `    ``preorderTraversal(root->left); ` ` `  `    ``// now recur on right subtree ` `    ``preorderTraversal(root->right); ` `} ` ` `  `// Driver program to test above ` `int` `main() ` `{ ` `    ``// BST formation ` `    ``struct` `Node *root = getNode(4); ` `    ``root->left = getNode(2); ` `    ``root->right = getNode(6); ` `    ``root->left->left = getNode(1); ` `    ``root->left->right = getNode(3); ` `    ``root->right->left = getNode(5); ` `    ``root->right->right = getNode(7); ` ` `  `    ``convertToMinHeapUtil(root); ` `    ``cout << ``"Preorder Traversal:"` `<< endl; ` `    ``preorderTraversal(root); ` ` `  `    ``return` `0; ` `} `

## Python3

 `# C++ implementation to convert the  ` `# given BST to Min Heap ` ` `  `# structure of a node of BST  ` `class` `Node:  ` ` `  `    ``# Constructor to create a new node  ` `    ``def` `__init__(``self``, data):  ` `        ``self``.data ``=` `data  ` `        ``self``.left ``=` `None` `        ``self``.right ``=` `None` ` `  `# function for the inorder traversal  ` `# of the tree so as to store the node  ` `# values in 'arr' in sorted order  ` `def` `inorderTraversal(root, arr): ` `    ``if` `root ``=``=` `None``: ` `        ``return` ` `  `    ``# first recur on left subtree  ` `    ``inorderTraversal(root.left, arr)  ` ` `  `    ``# then copy the data of the node  ` `    ``arr.append(root.data)  ` ` `  `    ``# now recur for right subtree  ` `    ``inorderTraversal(root.right, arr) ` `     `  `# function to convert the given  ` `# BST to MIN HEAP performs preorder  ` `# traversal of the tree  ` `def` `BSTToMinHeap(root, arr, i): ` `    ``if` `root ``=``=` `None``: ` `        ``return` ` `  `    ``# first copy data at index 'i' of  ` `    ``# 'arr' to the node  ` `    ``i[``0``] ``+``=` `1` `    ``root.data ``=` `arr[i[``0``]]  ` ` `  `    ``# then recur on left subtree  ` `    ``BSTToMinHeap(root.left, arr, i)  ` ` `  `    ``# now recur on right subtree  ` `    ``BSTToMinHeap(root.right, arr, i) ` ` `  `# utility function to convert the ` `# given BST to MIN HEAP  ` `def` `convertToMinHeapUtil(root): ` `     `  `    ``# vector to store the data of ` `    ``# all the nodes of the BST  ` `    ``arr ``=` `[]  ` `    ``i ``=` `[``-``1``]  ` ` `  `    ``# inorder traversal to populate 'arr'  ` `    ``inorderTraversal(root, arr);  ` ` `  `    ``# BST to MIN HEAP conversion  ` `    ``BSTToMinHeap(root, arr, i) ` `     `  `# function for the preorder traversal ` `# of the tree  ` `def` `preorderTraversal(root): ` `    ``if` `root ``=``=` `None``: ` `        ``return` ` `  `    ``# first print the root's data  ` `    ``print``(root.data, end ``=` `" "``) ` ` `  `    ``# then recur on left subtree  ` `    ``preorderTraversal(root.left) ` ` `  `    ``# now recur on right subtree  ` `    ``preorderTraversal(root.right) ` `     `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `     `  `    ``# BST formation  ` `    ``root ``=` `Node(``4``) ` `    ``root.left ``=` `Node(``2``)  ` `    ``root.right ``=` `Node(``6``)  ` `    ``root.left.left ``=` `Node(``1``) ` `    ``root.left.right ``=` `Node(``3``)  ` `    ``root.right.left ``=` `Node(``5``)  ` `    ``root.right.right ``=` `Node(``7``)  ` ` `  `    ``convertToMinHeapUtil(root) ` `    ``print``(``"Preorder Traversal:"``)  ` `    ``preorderTraversal(root)  ` ` `  `# This code is contributed ` `# by PranchalK `

Output:

```Preorder Traversal:
1 2 3 4 5 6 7
```

Time Complexity: O(n)
Auxiliary Space: O(n)

This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Improved By : PranchalKatiyar

Article Tags :
Practice Tags :

12

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.