Convert BST to Max Heap

Given a Binary Search Tree which is also a Complete Binary Tree. The problem is to convert a given BST into a Special Max Heap with the condition that all the values in the left subtree of a node should be less than all the values in the right subtree of the node. This condition is applied on all the nodes in the so converted Max Heap.


Input :          4
               /   \
              2     6
            /  \   /  \
           1   3  5    7  
Output :       7
             /   \
            3     6
          /   \  /   \
         1    2 4     5
The given BST has been transformed into a
Max Heap.
All the nodes in the Max Heap satisfies the given
condition, that is, values in the left subtree of
a node should be less than the values in the right
subtree of the node. 

Pre Requisites: Binary Seach Tree | Heaps

1. Create an array arr[] of size n, where n is the number of nodes in the given BST.
2. Perform the inorder traversal of the BST and copy the node values in the arr[] in sorted
3. Now perform the postorder traversal of the tree.
4. While traversing the root during the postorder traversal, one by one copy the values from the array arr[] to the nodes.





// C++ implementation to convert a given
// BST to Max Heap
#include <bits/stdc++.h>
using namespace std;
struct Node {
    int data;
    Node *left, *right;
/* Helper function that allocates a new node
   with the given data and NULL left and right
   pointers. */
struct Node* getNode(int data)
    struct Node* newNode = new Node;
    newNode->data = data;
    newNode->left = newNode->right = NULL;
    return newNode;
// Function prototype for postorder traversal
// of the given tree
void postorderTraversal(Node*);
// Function for the inorder traversal of the tree
// so as to store the node values in 'arr' in
// sorted order
void inorderTraversal(Node* root, vector<int>& arr)
    if (root == NULL)
    // first recur on left subtree
    inorderTraversal(root->left, arr);
    // then copy the data of the node
    // now recur for right subtree
    inorderTraversal(root->right, arr);
void BSTToMaxHeap(Node* root, vector<int> arr, int* i)
    if (root == NULL)
    // recur on left subtree
    BSTToMaxHeap(root->left, arr, i);
    // recur on right subtree
    BSTToMaxHeap(root->right, arr, i);
    // copy data at index 'i' of 'arr' to
    // the node
    root->data = arr[++*i];
// Utility function to convert the given BST to
void convertToMaxHeapUtil(Node* root)
    // vector to store the data of all the
    // nodes of the BST
    vector<int> arr;
    int i = -1;
    // inorder traversal to populate 'arr'
    inorderTraversal(root, arr);
    // BST to MAX HEAP conversion
    BSTToMaxHeap(root, arr, &i);
// Function to Print Postorder Traversal of the tree
void postorderTraversal(Node* root)
    if (!root)
    // recur on left subtree
    // then recur on right subtree
    // print the root's data
    cout << root->data << " ";
// Driver Code
int main()
    // BST formation
    struct Node* root = getNode(4);
    root->left = getNode(2);
    root->right = getNode(6);
    root->left->left = getNode(1);
    root->left->right = getNode(3);
    root->right->left = getNode(5);
    root->right->right = getNode(7);
    cout << "Postorder Traversal of Tree:" << endl;
    return 0;



Postorder Traversal of Tree:
1 2 3 4 5 6 7 

Time Complexity: O(n)
Auxiliary Space: O(n)
where, n is the number of nodes in the tree

My Personal Notes arrow_drop_up

Recommended Posts: