# Check whether two straight lines are orthogonal or not

Given two line segments AB and CD having A(x1, y1), B(x2, y2), C(x3, y3) and D(x4, y4). The task is to check whether these two lines are orthogonal or not. Two lines are called orthogonal if they are perpendicular at the point of intersection. Examples:

```Input: x1 = 0, y1 = 3, x2 = 0, y2 = -5
x3 = 2, y3 = 0, x4 = -1, y4 = 0
Output: Yes

Input:  x1 = 0, y1 = 4, x2 = 0, y2 = -9
x3 = 2, y3 = 0, x4 = -1, y4 = 0
Output: Yes
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: If the slopes of the two lines are m1 and m2 then for them to be orthogonal we need to check if:

• Both lines have infinite slope then answer is no.
• One line has infinite slope and if other line has 0 slope then answer is yes otherwise no.
• Both lines have finite slope and their product is -1 then the answer is yes.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of above approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to check if two straight ` `// lines are orthogonal or not ` `bool` `checkOrtho(``int` `x1, ``int` `y1, ``int` `x2, ``int` `y2, ` `                ``int` `x3, ``int` `y3, ``int` `x4, ``int` `y4) ` `{ ` ` `  `    ``int` `m1, m2; ` ` `  `    ``// Both lines have infinite slope ` `    ``if` `(x2 - x1 == 0 && x4 - x3 == 0) ` `        ``return` `false``; ` ` `  `    ``// Only line 1 has infinite slope ` `    ``else` `if` `(x2 - x1 == 0) { ` ` `  `        ``m2 = (y4 - y3) / (x4 - x3); ` ` `  `        ``if` `(m2 == 0) ` `            ``return` `true``; ` `        ``else` `            ``return` `false``; ` `    ``} ` ` `  `    ``// Only line 2 has infinite slope ` `    ``else` `if` `(x4 - x3 == 0) { ` ` `  `        ``m1 = (y2 - y1) / (x2 - x1); ` ` `  `        ``if` `(m1 == 0) ` `            ``return` `true``; ` `        ``else` `            ``return` `false``; ` `    ``} ` ` `  `    ``else` `{ ` `        ``// Find slopes of the lines ` `        ``m1 = (y2 - y1) / (x2 - x1); ` `        ``m2 = (y4 - y3) / (x4 - x3); ` ` `  `        ``// Check if their product is -1 ` `        ``if` `(m1 * m2 == -1) ` `            ``return` `true``; ` `        ``else` `            ``return` `false``; ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `x1 = 0, y1 = 4, x2 = 0, y2 = -9; ` `    ``int` `x3 = 2, y3 = 0, x4 = -1, y4 = 0; ` ` `  `    ``checkOrtho(x1, y1, x2, y2, x3, y3, x4, y4) ? cout << ``"Yes"` `                                               ``: cout << ``"No"``; ` ` `  `    ``return` `0; ` `} `

## Java

 `//Java implementation of above approach ` ` `  `import` `java.io.*; ` ` `  `class` `GFG { ` `     `  `    ``// Function to check if two straight ` `    ``// lines are orthogonal or not ` `    ``static` `boolean` `checkOrtho(``int` `x1, ``int` `y1, ``int` `x2, ``int` `y2, ` `                    ``int` `x3, ``int` `y3, ``int` `x4, ``int` `y4) ` `    ``{ ` ` `  `        ``int` `m1, m2; ` `     `  `        ``// Both lines have infinite slope ` `        ``if` `(x2 - x1 == ``0` `&& x4 - x3 == ``0``) ` `            ``return` `false``; ` ` `  `        ``// Only line 1 has infinite slope ` `        ``else` `if` `(x2 - x1 == ``0``) ` `        ``{ ` `            ``m2 = (y4 - y3) / (x4 - x3); ` `            ``if` `(m2 == ``0``) ` `                ``return` `true``; ` `            ``else` `                ``return` `false``; ` `        ``} ` ` `  `        ``// Only line 2 has infinite slope ` `        ``else` `if` `(x4 - x3 == ``0``)  ` `        ``{ ` `             ``m1 = (y2 - y1) / (x2 - x1); ` `            ``if` `(m1 == ``0``) ` `                ``return` `true``; ` `            ``else` `                ``return` `false``; ` `        ``} ` ` `  `        ``else`  `        ``{ ` `            ``// Find slopes of the lines ` `            ``m1 = (y2 - y1) / (x2 - x1); ` `            ``m2 = (y4 - y3) / (x4 - x3); ` ` `  `            ``// Check if their product is -1 ` `            ``if` `(m1 * m2 == -``1``) ` `                ``return` `true``; ` `            ``else` `                ``return` `false``; ` `        ``} ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main (String[] args) ` `    ``{ ` `        ``int` `x1 = ``0``, y1 = ``4``, x2 = ``0``, y2 = -``9``; ` `        ``int` `x3 = ``2``, y3 = ``0``, x4 = -``1``, y4 = ``0``; ` ` `  `        ``if``(checkOrtho(x1, y1, x2, y2, x3, y3, x4, y4)==``true``) ` `            ``System.out.println (``"Yes"``); ` `        ``else` `            ``System.out.println(``"No"` `); ` `    ``} ` `} ` ` `  `//This code is contributed by akt_mit.. `

## Python3

 `# Python 3 implementation of above approach ` ` `  `# Function to check if two straight ` `# lines are orthogonal or not ` `def` `checkOrtho(x1, y1, x2, y2, x3, y3, x4, y4): ` `     `  `    ``# Both lines have infinite slope ` `    ``if` `(x2 ``-` `x1 ``=``=` `0` `and` `x4 ``-` `x3 ``=``=` `0``): ` `        ``return` `False` ` `  `    ``# Only line 1 has infinite slope ` `    ``elif` `(x2 ``-` `x1 ``=``=` `0``): ` `        ``m2 ``=` `(y4 ``-` `y3) ``/` `(x4 ``-` `x3) ` ` `  `        ``if` `(m2 ``=``=` `0``): ` `            ``return` `True` `        ``else``: ` `            ``return` `False` ` `  `    ``# Only line 2 has infinite slope ` `    ``elif` `(x4 ``-` `x3 ``=``=` `0``): ` `        ``m1 ``=` `(y2 ``-` `y1) ``/` `(x2 ``-` `x1); ` ` `  `        ``if` `(m1 ``=``=` `0``): ` `            ``return` `True` `        ``else``: ` `            ``return` `False` ` `  `    ``else``: ` `         `  `        ``# Find slopes of the lines ` `        ``m1 ``=` `(y2 ``-` `y1) ``/` `(x2 ``-` `x1) ` `        ``m2 ``=` `(y4 ``-` `y3) ``/` `(x4 ``-` `x3) ` ` `  `        ``# Check if their product is -1 ` `        ``if` `(m1 ``*` `m2 ``=``=` `-``1``): ` `            ``return` `True` `        ``else``: ` `            ``return` `False` `     `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``x1 ``=` `0` `    ``y1 ``=` `4` `    ``x2 ``=` `0` `    ``y2 ``=` `-``9` `    ``x3 ``=` `2` `    ``y3 ``=` `0` `    ``x4 ``=` `-``1` `    ``y4 ``=` `0` `     `  `    ``if``(checkOrtho(x1, y1, x2, y2, ` `                  ``x3, y3, x4, y4)): ` `        ``print``(``"Yes"``) ` `    ``else``: ` `        ``print``(``"No"``) ` ` `  `# This code is contributed by ` `# Shashank_Sharma `

## C#

 `// C# implementation of above approach  ` `using` `System; ` ` `  `class` `GFG  ` `{  ` `     `  `    ``// Function to check if two straight  ` `    ``// lines are orthogonal or not  ` `    ``static` `bool` `checkOrtho(``int` `x1, ``int` `y1, ``int` `x2, ``int` `y2,  ` `                    ``int` `x3, ``int` `y3, ``int` `x4, ``int` `y4)  ` `    ``{  ` ` `  `        ``int` `m1, m2;  ` `     `  `        ``// Both lines have infinite slope  ` `        ``if` `(x2 - x1 == 0 && x4 - x3 == 0)  ` `            ``return` `false``;  ` ` `  `        ``// Only line 1 has infinite slope  ` `        ``else` `if` `(x2 - x1 == 0)  ` `        ``{  ` `            ``m2 = (y4 - y3) / (x4 - x3);  ` `            ``if` `(m2 == 0)  ` `                ``return` `true``;  ` `            ``else` `                ``return` `false``;  ` `        ``}  ` ` `  `        ``// Only line 2 has infinite slope  ` `        ``else` `if` `(x4 - x3 == 0)  ` `        ``{  ` `            ``m1 = (y2 - y1) / (x2 - x1);  ` `            ``if` `(m1 == 0)  ` `                ``return` `true``;  ` `            ``else` `                ``return` `false``;  ` `        ``}  ` ` `  `        ``else` `        ``{  ` `            ``// Find slopes of the lines  ` `            ``m1 = (y2 - y1) / (x2 - x1);  ` `            ``m2 = (y4 - y3) / (x4 - x3);  ` ` `  `            ``// Check if their product is -1  ` `            ``if` `(m1 * m2 == -1)  ` `                ``return` `true``;  ` `            ``else` `                ``return` `false``;  ` `        ``}  ` `    ``}  ` ` `  `    ``// Driver code  ` `    ``public` `static` `void` `Main ()  ` `    ``{  ` `        ``int` `x1 = 0, y1 = 4, x2 = 0, y2 = -9;  ` `        ``int` `x3 = 2, y3 = 0, x4 = -1, y4 = 0;  ` ` `  `        ``if``(checkOrtho(x1, y1, x2, y2, x3, y3, x4, y4) == ``true``)  ` `            ``Console.WriteLine(``"Yes"``);  ` `        ``else` `            ``Console.WriteLine(``"No"` `);  ` `    ``}  ` `}  ` ` `  `// This code is contributed by Ryuga `

## PHP

 ` `

Output:

```Yes
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.