Given two integers H1 and R representing the height and radius of a cone and two integers H2 and S representing the height and length of base of a pyramid, the task is to find the slant height of the cone and the pyramid.
Examples:
Input: H1 = 4.5, R = 6, H2 = 4, S = 4.8
Output:
Slant height of cone is: 7.5
Slant height of pyramid is: 4.66476
Input: H1 = 2, R = 4, H2 = 4, S = 8
Output:
Slant height of cone is: 4.47214
Slant height of pyramid is: 5.65685
Approach: The slant height of an object such as a cone or a pyramid is the distance measured from any vertex along a lateral face to the base (along the center of the face). The slant height of a right circular cone is uniform throughout the surface and is given by the formula:


where,
L is the slant height of the right circular cone
R is the radius of the right circular cone and
H is the height of the right circular cone
The slant height of a pyramid is given by the formula:


where,
L is the slant height of the pyramid
S is the side of the base of the pyramid
H is the height of the pyramid
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void coneSlantHeight( double cone_h,
double cone_r)
{
double slant_height_cone
= sqrt ( pow (cone_h, 2)
+ pow (cone_r, 2));
cout << "Slant height of cone is: "
<< slant_height_cone << '\n' ;
}
void pyramidSlantHeight( double pyramid_h,
double pyramid_s)
{
double slant_height_pyramid
= sqrt ( pow (pyramid_s / 2, 2)
+ pow (pyramid_h, 2));
cout << "Slant height of pyramid is: "
<< slant_height_pyramid << '\n' ;
}
int main()
{
double H1 = 4.5, R = 6;
coneSlantHeight(H1, R);
double H2 = 4, S = 4.8;
pyramidSlantHeight(H2, S);
return 0;
}
|
Java
import java.io.*;
class GFG
{
static void coneSlantHeight( double cone_h,
double cone_r)
{
double slant_height_cone
= Math.sqrt(Math.pow(cone_h, 2 )
+ Math.pow(cone_r, 2 ));
System.out.println( "Slant height of cone is: " +
slant_height_cone);
}
static void pyramidSlantHeight( double pyramid_h,
double pyramid_s)
{
double slant_height_pyramid
= Math.sqrt(Math.pow(pyramid_s / 2 , 2 )
+ Math.pow(pyramid_h, 2 ));
System.out.println( "Slant height of pyramid is: " +
slant_height_pyramid);
}
public static void main (String[] args)
{
double H1 = 4.5 , R = 6 ;
coneSlantHeight(H1, R);
double H2 = 4 , S = 4.8 ;
pyramidSlantHeight(H2, S);
}
}
|
Python3
from math import sqrt, pow
def coneSlantHeight(cone_h, cone_r):
slant_height_cone = sqrt( pow (cone_h, 2 ) + pow (cone_r, 2 ))
print ( "Slant height of cone is:" ,slant_height_cone)
def pyramidSlantHeight(pyramid_h, pyramid_s):
slant_height_pyramid = sqrt( pow (pyramid_s / 2 , 2 ) + pow (pyramid_h, 2 ))
print ( "Slant height of pyramid is:" , "{:.5f}" . format (slant_height_pyramid))
if __name__ = = '__main__' :
H1 = 4.5
R = 6
coneSlantHeight(H1, R);
H2 = 4
S = 4.8
pyramidSlantHeight(H2, S)
|
C#
using System;
public class GFG
{
static void coneSlantHeight( double cone_h,
double cone_r)
{
double slant_height_cone
= Math.Sqrt(Math.Pow(cone_h, 2)
+ Math.Pow(cone_r, 2));
Console.WriteLine( "Slant height of cone is: " +
slant_height_cone);
}
static void pyramidSlantHeight( double pyramid_h,
double pyramid_s)
{
double slant_height_pyramid
= Math.Sqrt(Math.Pow(pyramid_s / 2, 2)
+ Math.Pow(pyramid_h, 2));
Console.WriteLine( "Slant height of pyramid is: " +
slant_height_pyramid);
}
public static void Main ( string [] args)
{
double H1 = 4.5, R = 6;
coneSlantHeight(H1, R);
double H2 = 4, S = 4.8;
pyramidSlantHeight(H2, S);
}
}
|
Javascript
<script>
function coneSlantHeight( cone_h,
cone_r)
{
var slant_height_cone =
Math.sqrt(Math.pow(cone_h, 2) +
Math.pow(cone_r, 2));
document.write( "Slant height of cone is: "
+ slant_height_cone + "<br>" );
}
function pyramidSlantHeight( pyramid_h, pyramid_s)
{
var slant_height_pyramid =
Math.sqrt(Math.pow(pyramid_s / 2, 2) +
Math.pow(pyramid_h, 2));
document.write( "Slant height of pyramid is: "
+ slant_height_pyramid.toFixed(5));
}
var H1 = 4.5, R = 6;
coneSlantHeight(H1, R);
var H2 = 4, S = 4.8;
pyramidSlantHeight(H2, S);
</script>
|
Output:
Slant height of cone is: 7.5
Slant height of pyramid is: 4.66476
Time Complexity: O(sqrt(logH1+logR) + sqrt(logH2+logS))
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
07 Aug, 2022
Like Article
Save Article