Skip to content
Related Articles

Related Articles

C program to count zeros and ones in binary representation of a number
  • Difficulty Level : Medium
  • Last Updated : 23 Oct, 2020

Given a number N, the task is to write C program to count the number of 0s and 1s in the binary representation of N.

Examples:  

Input: N = 5 
Output: 
Count of 0s: 1 
Count of 1s: 2 
Explanation: Binary representation of 5 is “101”.
Input: N = 22 
Output: 
Count of 0s: 2 
Count of 1s: 3 
Explanation: Binary representation of 22 is “10110”. 

Method 1 – Naive Approach: The idea is to iterate through all bits in the binary representation of N and increment the count of 0s if current bit is ‘0’ else increment the count of 1s.

Below is the implementation of the above approach:



C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program for the above approach
#include <stdio.h>
 
// Function to count the number of 0s
// and 1s in binary representation of N
void count1s0s(int N)
{
    // Initialise count variables
    int count0 = 0, count1 = 0;
 
    // Iterate through all the bits
    while (N > 0) {
 
        // If current bit is 1
        if (N & 1) {
            count1++;
        }
 
        // If current bit is 0
        else {
            count0++;
        }
 
        N = N >> 1;
    }
 
    // Print the count
    printf("Count of 0s in N is %d\n", count0);
    printf("Count of 1s in N is %d\n", count1);
}
 
// Driver Code
int main()
{
    // Given Number
    int N = 9;
 
    // Function Call
    count1s0s(N);
    return 0;
}

chevron_right


Output

Count of 0s in N is 2
Count of 1s in N is 2

Time Complexity: O(log N)

Method 2 – Recursive Approach: The above approach can also be implemented using Recursion

Below is the implementation of the above approach:

C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program for the above approach
#include <math.h>
#include <stdio.h>
 
// Recursive approach to find the
// number of set bit in 1
int recursiveCount(int N)
{
 
    // Base Case
    if (N == 0) {
        return 0;
    }
 
    // Return recursively
    return (N & 1) + recursiveCount(N >> 1);
}
 
// Function to find 1s complement
int onesComplement(int n)
{
    // Find number of bits in the
    // given integer
    int N = floor(log2(n)) + 1;
 
    // XOR the given integer with
    // pow(2, N) - 1
    return ((1 << N) - 1) ^ n;
}
 
// Function to count the number of 0s
// and 1s in binary representation of N
void count1s0s(int N)
{
    // Initialise the count variables
    int count0, count1;
 
    // Function call to find the number
    // of set bits in N
    count1 = recursiveCount(N);
 
    // Function call to find 1s complement
    N = onesComplement(N);
 
    // Function call to find the number
    // of set bits in 1s complement of N
    count0 = recursiveCount(N);
 
    // Print the count
    printf("Count of 0s in N is %d\n", count0);
    printf("Count of 1s in N is %d\n", count1);
}
 
// Driver Code
int main()
{
    // Given Number
    int N = 5;
 
    // Function Call
    count1s0s(N);
    return 0;
}

chevron_right


Output

Count of 0s in N is 1
Count of 1s in N is 2

Time Complexity: O(log N)

Method 3 – Using Brian Kernighan’s Algorithm 
We can find the count of set bits using the steps below: 

  • Initialise count to 0.
  • If N > 0, then update N as N & (N – 1) as this will unset the most set bit from the right as shown below:
if N = 10;
Binary representation of N     = 1010
Binary representation of N - 1 = 1001
-------------------------------------
Logical AND of N and N - 1     = 1000

  • Increment the count for the above steps and repeat the above steps untill N becomes 0.

To find the count of 0s in the binary representation of N, find the one’s complement of N and find the count of set bits using the approach discussed above.

Below is the implementation of the above approach: 

C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program for the above approach
#include <math.h>
#include <stdio.h>
 
// Function to find 1s complement
int onesComplement(int n)
{
    // Find number of bits in the
    // given integer
    int N = floor(log2(n)) + 1;
 
    // XOR the given integer with
    // pow(2, N) - 1
    return ((1 << N) - 1) ^ n;
}
 
// Function to implement count of
// set bits using Brian Kernighan’s
// Algorithm
int countSetBits(int n)
{
    // Initialise count
    int count = 0;
 
    // Iterate untill n is 0
    while (n) {
        n &= (n - 1);
        count++;
    }
 
    // Return the final count
    return count;
}
 
// Function to count the number of 0s
// and 1s in binary representation of N
void count1s0s(int N)
{
    // Initialise the count variables
    int count0, count1;
 
    // Function call to find the number
    // of set bits in N
    count1 = countSetBits(N);
 
    // Function call to find 1s complement
    N = onesComplement(N);
 
    // Function call to find the number
    // of set bits in 1s complement of N
    count0 = countSetBits(N);
 
    // Print the count
    printf("Count of 0s in N is %d\n", count0);
    printf("Count of 1s in N is %d\n", count1);
}
 
// Driver Code
int main()
{
    // Given Number
    int N = 5;
 
    // Function Call
    count1s0s(N);
    return 0;
}

chevron_right


Output

Count of 0s in N is 1
Count of 1s in N is 2

Time Complexity: O(log N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :