# Largest sphere that can be inscribed in a right circular cylinder inscribed in a frustum

Given here is a frustum of height **h**, top-radius **r** & base-radius **R**, which inscribes a right circular cylinder which in turn inscribes a sphere . The task is to find the largest possible volume of this sphere.**Examples:**

Input:r = 5, R = 8, h = 11Output:523.333Input:r = 9, R = 14, h = 20Output:3052.08

**Approach**: Let the height of the cylinder = **H**, radius of the sphere = **x**

We know, the height and radius of the cylinder inscribed within the frustum is equal to the height and top-radius of the frustum respectively(Please refer here).So the height of the cylinder = **h**, radius of the cylinder = **r**.

Also, radius of the sphere inscribed within a cylinder is equal to radius of the cylinder(Please refer here), so **x = r**.

So, volume of the sphere, **V = 4*π*r^3/3**.

Below is the implementation of the above approach:

## C++

`// C++ Program to find the biggest sphere` `// that can be inscribed within a right` `// circular cylinder which in turn is inscribed` `// within a frustum` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the biggest sphere` `float` `sph(` `float` `r, ` `float` `R, ` `float` `h)` `{` ` ` `// the radii and height cannot be negative` ` ` `if` `(r < 0 && R < 0 && h < 0)` ` ` `return` `-1;` ` ` `// radius of the sphere` ` ` `float` `x = r;` ` ` `// volume of the sphere` ` ` `float` `V = (4 * 3.14 * ` `pow` `(r, 3)) / 3;` ` ` `return` `V;` `}` `// Driver code` `int` `main()` `{` ` ` `float` `r = 5, R = 8, h = 11;` ` ` `cout << sph(r, R, h) << endl;` ` ` `return` `0;` `}` |

## Java

`// Java Program to find the biggest sphere` `// that can be inscribed within a right` `// circular cylinder which in turn is inscribed` `// within a frustum` `import` `java.lang.Math;` `class` `gfg` `{` ` ` `// Function to find the biggest sphere` `static` `float` `sph(` `float` `r, ` `float` `R, ` `float` `h)` `{` ` ` `// the radii and height cannot be negative` ` ` `if` `(r < ` `0` `&& R < ` `0` `&& h < ` `0` `)` ` ` `return` `-` `1` `;` ` ` `// radius of the sphere` ` ` `float` `x = r;` ` ` `// volume of the sphere` ` ` `float` `V = (` `float` `)(` `4` `* ` `3` `.14f * Math.pow(r, ` `3` `)) / ` `3` `;` ` ` `return` `V;` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `float` `r = ` `5` `, R = ` `8` `, h = ` `11` `;` ` ` `System.out.println(sph(r, R, h));` `}` `}` `// This Code is contributed by Code_Mech.` |

## Python3

`# Python3 Program to find the biggest sphere` `# that can be inscribed within a right` `# circular cylinder which in turn is inscribed` `# within a frustum` `import` `math as mt` `# Function to find the biggest sphere` `def` `sph(r, R, h):` ` ` `# the radii and height cannot` ` ` `# be negative` ` ` `if` `(r < ` `0` `and` `R < ` `0` `and` `h < ` `0` `):` ` ` `return` `-` `1` ` ` `# radius of the sphere` ` ` `x ` `=` `r` ` ` `# volume of the sphere` ` ` `V ` `=` `(` `4` `*` `3.14` `*` `pow` `(r, ` `3` `)) ` `/` `3` ` ` `return` `V` `# Driver code` `r, R, h ` `=` `5` `, ` `8` `, ` `11` `print` `(sph(r, R, h))` `# This code is contributed by` `# Mohit kumar 29` |

## C#

`// C# Program to find the biggest sphere` `// that can be inscribed within a right` `// circular cylinder which in turn is` `// inscribed within a frustum` `using` `System;` `class` `gfg` `{` ` ` ` ` `// Function to find the biggest sphere` ` ` `static` `float` `sph(` `float` `r, ` `float` `R, ` `float` `h)` ` ` `{` ` ` ` ` `// the radii and height` ` ` `// cannot be negative` ` ` `if` `(r < 0 && R < 0 && h < 0)` ` ` `return` `-1;` ` ` ` ` `// radius of the sphere` ` ` `float` `x = r;` ` ` ` ` `// volume of the sphere` ` ` `float` `V = (` `float` `)(4 * 3.14f *` ` ` `Math.Pow(r, 3)) / 3;` ` ` ` ` `return` `V;` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `Main()` ` ` `{` ` ` `float` `r = 5, R = 8, h = 11;` ` ` `Console.WriteLine(sph(r, R, h));` ` ` `}` `}` `// This code is contributed by Ryuga` |

## PHP

`<?php` `// PHP Program to find the biggest sphere` `// that can be inscribed within a right` `// circular cylinder which in turn is` `// inscribed within a frustum Function` `// to find the biggest sphere` `function` `sph(` `$r` `, ` `$R` `, ` `$h` `)` `{` ` ` `// the radii and height` ` ` `// cannot be negative` ` ` `if` `(` `$r` `< 0 && ` `$R` `< 0 && ` `$h` `< 0)` ` ` `return` `-1;` ` ` `// radius of the sphere` ` ` `$x` `= ` `$r` `;` ` ` `// volume of the sphere` ` ` `$V` `= (4 * 3.14 * pow(` `$r` `, 3)) / 3;` ` ` `return` `$V` `;` `}` `// Driver code` ` ` `$r` `= 5;` ` ` `$R` `= 8;` ` ` `$h` `= 11;` ` ` `echo` `sph(` `$r` `, ` `$R` `, ` `$h` `);` `#This Code is contributed by ajit..` `?>` |

## Javascript

`<script>` `// javascript Program to find the biggest sphere` `// that can be inscribed within a right` `// circular cylinder which in turn is inscribed` `// within a frustum` ` ` `// Function to find the biggest sphere` `function` `sph(r , R , h)` `{` ` ` `// the radii and height cannot be negative` ` ` `if` `(r < 0 && R < 0 && h < 0)` ` ` `return` `-1;` ` ` `// radius of the sphere` ` ` `var` `x = r;` ` ` `// volume of the sphere` ` ` `var` `V = ((4 * 3.14 * Math.pow(r, 3)) / 3);` ` ` `return` `V;` `}` `// Driver code` ` ` `var` `r = 5, R = 8, h = 11;` `document.write(sph(r, R, h).toFixed(5));` `// This code is contributed by Amit Katiyar` `</script>` |

**Output:**

523.333

Attention reader! Don’t stop learning now. Join the **First-Step-to-DSA Course for Class 9 to 12 students ****, **specifically designed to introduce data structures and algorithms to the class 9 to 12 students