# Traversal of a Graph in lexicographical order using BFS

## C++

 `// C++ program to implement` `// the above approach`   `#include ` `using` `namespace` `std;`   `// Function to traverse the graph in` `// lexicographical order using BFS` `void` `LexiBFS(map<``char``, set<``char``> >& G,` `             ``char` `S, map<``char``, ``bool``>& vis)` `{` `    ``// Stores nodes of the graph` `    ``// at each level` `    ``queue<``char``> q;`   `    ``// Insert nodes of first level` `    ``q.push(S);`   `    ``// Mark S as` `    ``// visited node` `    ``vis[S] = ``true``;`   `    ``// Traverse all nodes of the graph` `    ``while` `(!q.empty()) {`   `        ``// Stores top node of queue` `        ``char` `top = q.front();`   `        ``// Print visited nodes of graph` `        ``cout << top << ``" "``;`   `        ``// Insert all adjacent nodes` `        ``// of the graph into queue` `        ``for` `(``auto` `i = G[top].begin();` `             ``i != G[top].end(); i++) {`   `            ``// If i is not visited` `            ``if` `(!vis[*i]) {`   `                ``// Mark i as visited node` `                ``vis[*i] = ``true``;`   `                ``// Insert i into queue` `                ``q.push(*i);` `            ``}` `        ``}`   `        ``// Pop top element of the queue` `        ``q.pop();` `    ``}` `}`   `// Utility Function to traverse graph` `// in lexicographical order of nodes` `void` `CreateGraph(``int` `N, ``int` `M, ``int` `S,` `                 ``char` `Edges[][2])` `{` `    ``// Store all the adjacent nodes` `    ``// of each node of a graph` `    ``map<``char``, set<``char``> > G;`   `    ``// Traverse Edges[][2] array` `    ``for` `(``int` `i = 0; i < M; i++) {` `        ``G[Edges[i][0]].insert(Edges[i][1]);` `    ``}`   `    ``// Check if a node is already visited or not` `    ``map<``char``, ``bool``> vis;`   `    ``LexiBFS(G, S, vis);` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `N = 10, M = 10 ,S = ``'a'``;` `    ``char` `Edges[M][2]` `        ``= { { ``'a'``, ``'y'` `}, { ``'a'``, ``'z'` `},` `            ``{ ``'a'``, ``'p'` `}, { ``'p'``, ``'c'` `},` `            ``{ ``'p'``, ``'b'` `}, { ``'y'``, ``'m'` `},` `            ``{ ``'y'``, ``'l'` `}, { ``'z'``, ``'h'` `},` `            ``{ ``'z'``, ``'g'` `}, { ``'z'``, ``'i'` `} };`   `    ``// Function Call` `    ``CreateGraph(N, M, S, Edges);`   `    ``return` `0;` `}`

## Java

 `// Java program to implement` `// the above approach` `import` `java.util.*;`   `class` `Graph{`   `// Function to traverse the graph in` `// lexicographical order using BFS` `static` `void` `LexiBFS(HashMap> G,` `            ``char` `S, HashMap vis)` `{` `    `  `    ``// Stores nodes of the graph` `    ``// at each level` `    ``Queue q = ``new` `LinkedList<>();`   `    ``// Insert nodes of first level` `    ``q.add(S);`   `    ``// Mark S as` `    ``// visited node` `    ``vis.put(S, ``true``);`   `    ``// Traverse all nodes of the graph` `    ``while` `(!q.isEmpty())` `    ``{` `        `  `        ``// Stores top node of queue` `        ``char` `top = q.peek();`   `        ``// Print visited nodes of graph` `        ``System.out.print(top + ``" "``);`   `        ``// Insert all adjacent nodes` `        ``// of the graph into queue` `        ``if` `(G.containsKey(top))` `        ``{` `            ``for``(``char`  `i : G.get(top)) ` `            ``{` `                `  `                ``// If i is not visited` `                ``if` `(vis.containsKey(i))` `                ``{` `                    ``if` `(!vis.get(i))` `                    ``{` `                        `  `                        ``// Mark i as visited node` `                        ``vis.put(i, ``true``);`   `                        ``// Insert i into queue` `                        ``q.add(i);` `                    ``}` `                ``}` `                ``else` `                ``{` `                    `  `                    ``// Mark i as visited node` `                    ``vis.put(i, ``true``);`   `                    ``// Insert i into queue` `                    ``q.add(i);` `                ``}` `            ``}` `        ``}`   `        ``// Pop top element of the queue` `        ``q.remove();` `    ``}` `}`   `// Utility Function to traverse graph` `// in lexicographical order of nodes` `static` `void` `CreateGraph(``int` `N, ``int` `M, ``char` `S,` `                        ``char``[][] Edges)` `{` `    `  `    ``// Store all the adjacent nodes` `    ``// of each node of a graph` `    ``HashMap> G = ``new` `HashMap<>();`   `    ``// Traverse Edges[][2] array` `    ``for``(``int` `i = ``0``; i < M; i++)` `    ``{` `        ``if` `(G.containsKey(Edges[i][``0``]))` `        ``{` `            ``Set temp = G.get(Edges[i][``0``]);` `            ``temp.add(Edges[i][``1``]);` `            ``G.put(Edges[i][``0``], temp);` `        ``}` `        ``else` `        ``{` `            ``Set temp = ``new` `HashSet<>();` `            ``temp.add(Edges[i][``1``]);` `            ``G.put(Edges[i][``0``], temp);` `        ``}` `    ``}` `    `  `    ``// Check if a node is already visited or not` `    ``HashMap vis = ``new` `HashMap<>();`   `    ``LexiBFS(G, S, vis);` `}`   `// Driver code` `public` `static` `void` `main(String[] args) ` `{` `    ``int` `N = ``10``, M = ``10``;` `    ``char` `S = ``'a'``;` `    `  `    ``char``[][] Edges = { { ``'a'``, ``'y'` `}, { ``'a'``, ``'z'` `},` `                       ``{ ``'a'``, ``'p'` `}, { ``'p'``, ``'c'` `},` `                       ``{ ``'p'``, ``'b'` `}, { ``'y'``, ``'m'` `},` `                       ``{ ``'y'``, ``'l'` `}, { ``'z'``, ``'h'` `},` `                       ``{ ``'z'``, ``'g'` `}, { ``'z'``, ``'i'` `} };`   `    ``// Function Call` `    ``CreateGraph(N, M, S, Edges);` `}` `}`   `// This code is contributed by hritikrommie`

## Python3

 `# Python3 program to implement` `# the above approach` `from` `collections ``import` `deque`   `G ``=` `[[] ``for` `i ``in` `range``(``1000``)]` `vis ``=` `[``False` `for` `i ``in` `range``(``1000``)]`   `# Function to traverse the graph in` `# lexicographical order using BFS` `def` `LexiBFS(S):` `    `  `    ``global` `G, vis` `    `  `    ``# Stores nodes of the graph` `    ``# at each level` `    ``q ``=` `deque()` `    `  `    ``# Insert nodes of first level` `    ``q.append(``ord``(S))`   `    ``# Mark S as` `    ``# visited node` `    ``vis[``ord``(S)] ``=` `True` `    ``#a = []`   `    ``# Traverse all nodes of the graph` `    ``while` `(``len``(q) > ``0``):` `        `  `        ``# Stores top node of queue` `        ``top ``=` `q.popleft()` `        ``print``(``chr``(top), end ``=` `" "``)`   `        ``# Insert all adjacent nodes` `        ``# of the graph into queue` `        ``for` `i ``in` `G[top]:` `            `  `            ``# If i is not visited` `            ``if` `(``not` `vis[i]):` `                ``#print(chr(i),end=" ")`   `                ``# Mark i as visited node` `                ``vis[i] ``=` `True`   `                ``# Insert i into queue` `                ``q.append(i)`   `# Utility Function to traverse graph` `# in lexicographical order of nodes` `def` `CreateGraph(N, M, S,Edges):`   `    ``# Traverse Edges[][2] array` `    ``for` `i ``in` `range``(M):` `        ``G[``ord``(Edges[i][``0``])].append(``ord``(Edges[i][``1``]))`   `    ``for` `i ``in` `range``(``1000``):` `        ``G[i] ``=` `sorted``(G[i])`   `    ``LexiBFS(S)`   `# Driver Code` `if` `__name__ ``=``=` `'__main__'``:` `    `  `    ``N, M ``=` `10``, ``10` `    ``S ``=` `'a'` `    `  `    ``Edges ``=` `[ [ ``'a'``, ``'y'` `], [ ``'a'``, ``'z'` `],` `              ``[ ``'a'``, ``'p'` `], [ ``'p'``, ``'c'` `],` `              ``[ ``'p'``, ``'b'` `], [ ``'y'``, ``'m'` `],` `              ``[ ``'y'``, ``'l'` `], [ ``'z'``, ``'h'` `],` `              ``[ ``'z'``, ``'g'` `], [ ``'z'``, ``'i'` `] ]`   `    ``# Function Call` `    ``CreateGraph(N, M, S, Edges)`   `# This code is contributed by mohit kumar 29`

## Javascript

 ``

## C#

 `// C# program to implement` `// the above approach` `using` `System;` `using` `System.Collections.Generic;`   `class` `Graph {`   `    ``// Function to traverse the graph in` `    ``// lexicographical order using BFS` `    ``static` `void` `LexiBFS(Dictionary<``char``, HashSet<``char``> > G,` `                        ``char` `S, Dictionary<``char``, ``bool``> vis)` `    ``{`   `        ``// Stores nodes of the graph` `        ``// at each level` `        ``Queue<``char``> q = ``new` `Queue<``char``>();`   `        ``// Insert nodes of first level` `        ``q.Enqueue(S);`   `        ``// Mark S as` `        ``// visited node` `        ``vis[S] = ``true``;`   `        ``// Traverse all nodes of the graph` `        ``while` `(q.Count != 0) {`   `            ``// Stores top node of queue` `            ``char` `top = q.Peek();`   `            ``// Print visited nodes of graph` `            ``Console.Write(top + ``" "``);`   `            ``// Insert all adjacent nodes` `            ``// of the graph into queue` `            ``if` `(G.ContainsKey(top)) {` `                ``List<``char``> sortedAdjList` `                    ``= ``new` `List<``char``>(G[top]);` `                ``sortedAdjList.Sort();` `                ``foreach``(``char` `i ``in` `sortedAdjList)` `                ``{`   `                    ``// If i is not visited` `                    ``if` `(vis.ContainsKey(i)) {` `                        ``if` `(!vis[i]) {`   `                            ``// Mark i as visited node` `                            ``vis[i] = ``true``;`   `                            ``// Insert i into queue` `                            ``q.Enqueue(i);` `                        ``}` `                    ``}` `                    ``else` `{`   `                        ``// Mark i as visited node` `                        ``vis[i] = ``true``;`   `                        ``// Insert i into queue` `                        ``q.Enqueue(i);` `                    ``}` `                ``}` `            ``}`   `            ``// Pop top element of the queue` `            ``q.Dequeue();` `        ``}` `    ``}`   `    ``// Utility Function to traverse graph` `    ``// in lexicographical order of nodes` `    ``static` `void` `CreateGraph(``int` `N, ``int` `M, ``char` `S,` `                            ``char``[, ] Edges)` `    ``{`   `        ``// Store all the adjacent nodes` `        ``// of each node of a graph` `        ``Dictionary<``char``, HashSet<``char``> > G` `            ``= ``new` `Dictionary<``char``, HashSet<``char``> >();`   `        ``// Traverse Edges[][2] array` `        ``for` `(``int` `i = 0; i < M; i++) {` `            ``char` `u = Edges[i, 0];` `            ``char` `v = Edges[i, 1];`   `            ``if` `(G.ContainsKey(u)) {` `                ``G[u].Add(v);` `            ``}` `            ``else` `{` `                ``HashSet<``char``> temp = ``new` `HashSet<``char``>();` `                ``temp.Add(v);` `                ``G[u] = temp;` `            ``}`   `            ``if` `(!G.ContainsKey(v)) {` `                ``G[v] = ``new` `HashSet<``char``>();` `            ``}` `        ``}`   `        ``// Check if a node is already visited or not` `        ``Dictionary<``char``, ``bool``> vis` `            ``= ``new` `Dictionary<``char``, ``bool``>();` `        ``LexiBFS(G, S, vis);` `    ``}`   `    ``// Driver code` `    ``public` `static` `void` `Main()` `    ``{` `        ``int` `N = 10, M = 10;` `        ``char` `S = ``'a'``;` `        ``char``[, ] Edges` `            ``= { { ``'a'``, ``'y'` `}, { ``'a'``, ``'z'` `}, { ``'a'``, ``'p'` `},` `                ``{ ``'p'``, ``'c'` `}, { ``'p'``, ``'b'` `}, { ``'y'``, ``'m'` `},` `                ``{ ``'y'``, ``'l'` `}, { ``'z'``, ``'h'` `}, { ``'z'``, ``'g'` `},` `                ``{ ``'z'``, ``'i'` `} };`   `        ``// Function Call` `        ``CreateGraph(N, M, S, Edges);` `    ``}` `}` `// This code is contributed by Prajwal Kandekar`

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next