Sum of the series 1.2.3 + 2.3.4 + … + n(n+1)(n+2)

Find the sum up to n terms of the series: 1.2.3 + 2.3.4 + … + n(n+1)(n+2). In this 1.2.3 represent the first term and 2.3.4 represent the second term .

Examples :

Input : 2
Output : 30
1.2.3 + 2.3.4 = 6 + 24 = 30

Input : 3
Output : 90

Simple Approach We run a loop for i = 1 to n, and find the sum of (i)*(i+1)*(i+2).
And at the end display the sum .

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find sum of the series
// 1.2.3 + 2.3.4 + 3.4.5 + ...
#include <bits/stdc++.h>
using namespace std;
  
int sumofseries(int n)
{
    int res = 0;
    for (int i = 1; i <= n; i++) 
        res += (i) * (i + 1) * (i + 2);    
    return res;
}
  
// Driver Code
int main()
{
    cout << sumofseries(3) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find sum of the series
// 1.2.3 + 2.3.4 + 3.4.5 + ...
import java.io.*;
import java.math.*;
  
class GFG 
{
  
    static int sumofseries(int n)
    {
    int res = 0;
    for (int i = 1; i <= n; i++) 
        res += (i) * (i + 1) * (i + 2); 
    return res;
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        System.out.println(sumofseries(3));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find sum of the series
# 1.2.3 + 2.3.4 + 3.4.5 + ...
  
def sumofseries(n):
  
    res = 0
    for i in range(1, n+1): 
        res += (i) * (i + 1) * (i + 2
    return res
  
# Driver Program
print(sumofseries(3)) 
  
# This code is contributed
# by Smitha Dinesh Semwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find sum of the series
// 1.2.3 + 2.3.4 + 3.4.5 + ...
using System;
  
class GFG 
{
  
    static int sumofseries(int n)
    {
        int res = 0;
        for (int i = 1; i <= n; i++) 
            res += (i) * (i + 1) * (i + 2); 
        return res;
    }
  
    // Driver Code
    public static void Main()
    {
        Console.WriteLine(sumofseries(3));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find
// sum of the series
// 1.2.3 + 2.3.4 + 3.4.5 + ...
  
function sumofseries($n)
{
    $res = 0;
    for ($i = 1; $i <= $n; $i++) 
        $res += ($i) * ($i + 1) * 
                       ($i + 2); 
    return $res;
}
  
    // Driver Code
    echo sumofseries(3);
  
//This code is contributed by anuj_67.
?>

chevron_right


Output :

90
Complexity : O(N)

Efficient Approach

Using Efficient Approach we know that we have to find = summation of( (n)*(n+1)*(n+2) )

Sn = summation[ (n)*(n+1)*(n+2) ]
Sn = summation [n3 + 2*n2 + n2 + 2*n]

We know sum of cubes of natural numbers is (n*(n+1))/2)2, sum of squares of natural numbers is n * (n + 1) * (2n + 1) / 6 and sum of first n natural numbers is n(n+1)/2

Sn = ((n*(n+1))/2)2 + 3((n)*(n+1)*(2*n+1)/6) + 2*((n)*(n+1)/2)
So by evaluating the above we get,
Sn = (n*(n+1)*(n+2)*(n+3)/4)
Hence it has a O(1) complexity.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient CPP program to 
// find sum of the series 
// 1.2.3 + 2.3.4 + 3.4.5 + ...
#include <bits/stdc++.h>
using namespace std;
  
// function to calculate
// sum of series
int sumofseries(int n)
{
    return (n * (n + 1) * 
           (n + 2) * (n + 3) / 4);
}
  
// Driver Code
int main()
{
    cout << sumofseries(3) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient Java program to
// find sum of the series 
// 1.2.3 + 2.3.4 + 3.4.5 + ..
import java.io.*;
import java.math.*;
  
class GFG 
{
    static int sumofseries(int n)
    {
    return (n * (n + 1) * 
           (n + 2) * (n + 3) / 4);
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        System.out.println(sumofseries(3));
    
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Efficient CPP program to find sum of the
# series 1.2.3 + 2.3.4 + 3.4.5 + ...
  
# function to calculate sum of series
def sumofseries(n):
  
    return int(n * (n + 1) * (n + 2) * (n + 3) / 4)
  
  
# Driver program
print(sumofseries(3))
      
  
# This code is contributed
# by Smitha Dinesh Semwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Efficient C# program to 
// find sum of the series 
// 1.2.3 + 2.3.4 + 3.4.5 + ..
using System;
  
class GFG 
{
    static int sumofseries(int n)
    {
    return (n * (n + 1) * 
           (n + 2) * (n + 3) / 4);
    }
  
    // Driver Code
    public static void Main()
    {
        Console.WriteLine(sumofseries(3));
    
}
  
// This code is contributed by anuj_67.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Efficient CPP program
// to find sum of the
// series 1.2.3 + 2.3.4 
// + 3.4.5 + ...
  
// function to calculate
// sum of series
function sumofseries($n)
{
    return ($n * ($n + 1) * 
           ($n + 2) * ($n + 3) / 4);
}
  
    // Driver Code
    echo sumofseries(3);
  
// This code is contributed by anuj_67.
?>

chevron_right


Output :

90

Time Complexity : O(1)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m