Sum of the Series 1/(1*2) + 1/(2*3) + 1/(3*4) + 1/(4*5) + . . . . .

Given a positive integer n, The problem is to find the sum of the given series upto n terms:
1/(1*2) + 1/(2*3) + 1/(3*4) + 1/(4*5) + . . . . . . . + 1/(n*(n+1))

Examples :

Input : 3
Output : 0.75
  ( 1/(1*2)+ 1/(2*3) + 1/(3*4) )
= (1/2 + 1/6 + 1/12)
= 0.75

Input : 10
Output : 0.909
  ( 1/(1*2) + 1/(2*3) + 1/(3*4) + 1/(4*5) +
   1/(5*6) + 1/(6*7) + 1/(7*8) + 1/(8*9) +
   1/(9*10) + 1/(10*11) )
= (1/2 + 1/6 + 1/12 + 1/20 + 1/30 +
   1/42 + 1/56 + 1/72 + 1/90 + 1/110)
= 0.909

Naive Approach: Use a for loop to calculate each term iteratively and add to the final sum.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the sum of given series
#include <bits/stdc++.h>
using namespace std;
  
// function to find the sum of given series
double sumOfTheSeries(int n)
{
    // Computing sum term by term
    double sum = 0.0;
    for (int i = 1; i <= n; i++)
        sum += 1.0 / (i * (i + 1));   
    return sum;
}
  
// driver program to test above function
int main()
{
    int n = 10;
    cout << sumOfTheSeries(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the sum of given series
class demo {
  
    // function to find the sum of given series
    public static double sumOfTheSeries(int n)
    {
       // Computing sum term by term
        double sum = 0.0;
        for (int i = 1; i <= n; i++) 
            sum += 1.0 / (i * (i + 1));
        return sum;
    }
  
    // driver program to test above function
    public static void main(String args[])
    {
        int n = 10;
        System.out.println(sumOfTheSeries(n));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code to find the sum of given series
  
# Function to find the sum of given series
def sumOfTheSeries( n ):
      
    # Computing sum term by term
    sum = 0
    for i in range(1, n + 1):
        sum += 1.0 / (i * (i + 1)); 
    return sum
  
  
# Driver function
if __name__ == '__main__':
      
    ans = sumOfTheSeries(10)
      
    # Rounding decimal value to 6th decimal place
    print (round(ans, 6))
  
# This code is contributed by 'saloni1297'

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the sum of given series
using System;
  
class demo {
  
    // Function to find the sum of given series
    public static double sumOfTheSeries(int n)
    {
        // Computing sum term by term
        double sum = 0.0;
        for (int i = 1; i <= n; i++) 
            sum += 1.0 / (i * (i + 1));
        return sum;
    }
  
    // Driver Code
    public static void Main()
    {
        int n = 10;
        Console.Write(sumOfTheSeries(n));
    }
}
  
// This code is contributed by vt_m

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find the
// sum of given series
  
// function to find the 
// sum of given series
function sumOfTheSeries( $n)
{
    // Computing sum term by term
    $sum = 0.0;
    for ( $i = 1; $i <= $n; $i++)
        $sum += 1.0 / ($i * ($i + 1)); 
    return $sum;
}
  
// Driver Code
$n = 10;
echo sumOfTheSeries($n);
  
// This code is contributed by anuj_67
?>

chevron_right



Output :

0.909091

Efficient Approach: Use the formula n/(n+1)

Validity of the formula:
Sum upto n terms = 1/(1*2) + 1/(2*3) + 1/(3*4) +
                           ........ + 1/(n*(n+1))
where
1st term = 1/(1*2)
2nd term = 1/(2*3)
3rd term = 1/(3*4)
.
.
.
.
n-th term = 1/(n*(n+1))

i.e. the k-th term is of the form 1/(k*(k+1))
which can further be written as k-th term = 
                              1/k - 1/(k+1)

So sum upto n terms can be calculated as:
  (1/1 - 1/1+1) + (1/2 - 1/2+1) + (1/3 - 1/3+1)
   + ......... + (1/n-1 - /1n) + (1/n - 1/n+1) 
= (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + .........
                    + (1/n-1 - 1/n) + (1/n - 1/n+1)
= 1 - 1/n+1
= ((n+1) - 1)/n+1
= n/n+1

Hence sum  upto n terms = n/n+1

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find sum of given series
#include <bits/stdc++.h>
using namespace std;
  
// function to find sum of given series
double sumOfTheSeries(int n)
{
    // type-casting n/n+1 from int to double
    return (double)n / (n + 1);
}
  
// driver program to test above function
int main()
{
    int n = 10;
    cout << sumOfTheSeries(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find sum of given series
class demo {
  
    // function to find sum of given series
    public static double sumOfTheSeries(int n)
    {
        // type -casting n/n+1 from int to double
        return(double)n / (n + 1);
    }
  
    // driver program to test above function
    public static void main(String args[])
    {
        int n = 10;
        System.out.println(sumOfTheSeries(n));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code to find sum of given series
  
# Function to find sum of given series
def sumOfTheSeries(n):
      
    # Type-casting n/n+1 from int to float
    return (float(n) / (n + 1))
  
# Driver function   
if __name__ == '__main__':
          
    n = 10
    ans = sumOfTheSeries(n)
      
    # Rounding decimal value
    print (round(ans, 6))
  
# This code is contributed by 'saloni1297'

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find sum of given series
using System;
  
class demo {
  
    // Function to find sum of given series
    public static double sumOfTheSeries(int n)
    {
        // type -casting n/n+1 from int to double
        return(double)n / (n + 1);
    }
  
    // Driver Code
    public static void Main()
    {
        int n = 10;
        Console.Write(sumOfTheSeries(n));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find
// sum of given series
  
// function to find sum
// of given series
function sumOfTheSeries($n)
{
    // type-casting n/n+1 
    // from int to double
    return $n / ($n + 1);
}
  
// Driver Code
$n = 10;
echo sumOfTheSeries($n);
  
// This code is contributed
// by SanjuTomar
?>

chevron_right


Output :

0.909091


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : SanjuTomar, vt_m



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.