Open In App

Find sum of N terms of series 1, (1+4) , (1+4+4^2), (1+4+4^2+4^3), …..

Last Updated : 20 Aug, 2022
Improve
Improve
Like Article
Like
Save
Share
Report

Given a positive integer, N. Find the sum of the first N term of the series-

1, (1+4), (1+4+42), (1+4+42+43), …., till N terms

Examples:

Input: N = 3
Output: 27

Input: N = 5
Output: 453

 

Approach:

1st term = 1

2nd term = (1 + 4)

3rd term = (1 + 4 + 4 ^ 2)

4th term = (1 + 4 + 4 ^ 2 + 4 ^ 3)

.

.

Nth term = (1 + 4 + 4 ^ 2+….+ 4 ^ (N – 2) + 4 ^(N – 1))

The sequence is formed by using the following pattern. For any value N-

S_{N}=\frac{4}{9}(4^{N}-1)-\frac{N}{3}

Derivation:

The following series of steps can be used to derive the formula to find the sum of N terms-

The series 

1, (1+4), (1+4+4^{2}), (1+4+4^{2}+4^{3})+....+N terms

can be decomposed as-

a_{1}=1

a_{2}=1+4

a_{3}=1+4+4^{2}

a_{4}=1+4+4^{2}+4^{3}

a_{N}=1+4+4^{2}+4^{3}+....+4^{N}                                           -(1)

The equation (1) is in G.P. with

First term a = 1

Common ration r = 4

The sum of N terms in G.P. for r>1 is

S_{N}=\frac{a(r^{N}-1)}{r-1}

Substituting the values of a and r in the above equation, we get-

S_{N}=\frac{1(4^{N}-1)}{4-1}

Thus, the term

a_{N}=\frac{(4^{N}-1)}{3}

The sum of the series 1, (1+4), (1+4+4^{2}), (1+4+4^{2}+4^{3})+….+N terms can be represented as-

S_{N}=\sum a^{N}

S_{N}=\sum \frac{4^{N}-1}{3}

S_{N}=\frac{1}{3}\sum 4^{N}-\frac{1}{3}\sum 1

S_{N}=\frac{1}{3}(4+4^{2}+4^{3}+....+4^{N})-\frac{N}{3}                  -(2)

The equation-

4+4^{2}+4^{3}+....+4^{N}

is in G.P. with 

First term a = 4

Common ratio r = 4

Applying the formula of sum of G.P.-

S_{N}=\frac{4(4^{N}-1)}{4-1}                                                           -(3)

Substituting equation (3) in equation (2), we get-

S_{N}=\frac{1}{3}(\frac{4(4^{N}-1)}{4-1})-\frac{N}{3}

S_{N}=\frac{4}{3}(\frac{4^{N}-1}{4-1})-\frac{N}{3}

S_{N}=\frac{4}{9}(4^{N}-1)-\frac{N}{3}

Illustration:

Input: N = 3
Output: 11
Explanation:
S_{N}=\frac{4}{9}(4^{N}-1)-\frac{N}{3}
S_{N}=\frac{4}{9}(4^{3}-1)-\frac{3}{3}
S_{N}=\frac{4}{9}(63)-1
S_{N}=27

Below is the implementation of the above approach:

C++

// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum
// of first N term
int calcSum(int n)
{
    int a = pow(4, n);
    return (4 * (a - 1) - 3 * n) / 9;
}
 
// Driver Code
int main()
{
    // Value of N
    int N = 3;
 
    // Function call to calculate
    // sum of the series
    cout << calcSum(N);
    return 0;
}

                    

Java

// Java code for the above approach
import java.util.*;
 
class GFG{
 
  // Function to calculate the sum
  // of first N term
  static int calcSum(int n)
  {
    int a = (int)Math.pow(4, n);
    return (4 * (a - 1) - 3 * n) / 9;
  }
 
 
  // Driver Code
  public static void main(String[] args)
  {
    // Value of N
    int N = 3;
 
    // Function call to calculate
    // sum of the series
    System.out.print(calcSum(N));
  }
}
 
// This code is contributed by code_hunt.

                    

Python3

# Python 3 program for the above approach
 
# Function to calculate the sum
# of first N term
def calcSum(n):
    a = pow(4, n)
    return (4 * (a - 1) - 3 * n) / 9
 
 
# Driver Code
if __name__ == "__main__":
 
    # Value of N
    N = 3
     
    # Function call to calculate
    # sum of the series
    print(calcSum(N))
 
# This code is contributed by Abhishek Thakur.

                    

C#

// C# code for the above approach
using System;
 
class GFG{
 
  // Function to calculate the sum
  // of first N term
  static int calcSum(int n)
  {
    int a = (int)Math.Pow(4, n);
    return (4 * (a - 1) - 3 * n) / 9;
  }
 
 
  // Driver Code
  public static void Main()
  {
    // Value of N
    int N = 3;
 
    // Function call to calculate
    // sum of the series
    Console.Write(calcSum(N));
  }
}
 
// This code is contributed by gfgking

                    

Javascript

<script>
// Javascript program to implement
// the above approach
 
// Function to calculate the sum
// of first N term
function calcSum(n)
{
    let a = Math.pow(4, n)
    return (4 * (a - 1) - 3 * n) / 9
}
 
// Driver Code
 
// Value of N
let N = 3
 
// Function call to calculate
// sum of the series
document.write(calcSum(N))
 
// This code is contributed by samim2000.
</script>

                    

Output
27

Time Complexity: O(log4n) because using inbuilt pow function
Auxiliary Space: O(1), since no extra space has been taken.


 



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads