Find the sum of the series 1+11+111+1111+….. upto n terms

Here we are going to find the sum of the series 1 + 11 + 111 + 1111 +…..upto N terms (where N is given).

Example :

Input : 3
Output : 1 + 11 + 111 +....
Total sum is : 123

Input : 4
Output : 1 + 11 + 111 + 1111 +..... 
Total sum is : 1234

Input : 7
Output : 1 + 11 + 111 + 1111 + 11111 + 
         111111 + 1111111 +..... 
Total sum is : 1234567


Here we see that when value of N is 3, series last upto 1 + 11 + 111 i.e, three term and it’s sum is 123.

Program for finding sum of above series :

C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program to find the sum of
// the series 1+11+111+1111+....
#include <stdio.h>
  
// Function for finding summation
int summation(int n)
{
    int sum = 0, j = 1;
    for (int i = 1; i <= n; i++) {
        sum = sum + j;
  
        // Appending a 1 at the end
        j = (j * 10) + 1;
    }
  
    return sum;
}
  
// Driver Code
int main()
{
    int n = 5;
    printf("%d", summation(n));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the sum of
// the series 1+11+111+1111+....
import java.io.*;
  
class GFG 
{
  
    // Function for finding summation
    static int summation(int n)
    {
        int sum = 0, j = 1;
        for (int i = 1; i <= n; i++) 
        {
            sum = sum + j;
            j = (j * 10) + 1;
        }
  
        return sum;
    }
  
    // Driver Code
    public static void main(String args[])
    {
        int n = 5;
        System.out.println(summation(n));
    }
}
  
// This code is contributed
// by Nikita Tiwari

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to get the summation
# of following series
def summation(n):
    sum = 0
    j = 1
      
    for i in range(1, n + 1):
        sum = sum + j
        j = (j * 10) + 1
          
    return sum
          
# Driver Code
n = 5
print(summation(n))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the sum of
// the series 1+11+111+1111+....
using System;
  
class GFG 
{
  
    // Function for finding summation
    static int summation(int n)
    {
        int sum = 0, j = 1;
        for (int i = 1; i <= n; i++) 
        {
            sum = sum + j;
            j = (j * 10) + 1;
        }
  
        return sum;
    }
  
    // Driver Code
    public static void Main()
    {
        int n = 5;
        Console.WriteLine(summation(n));
    }
}
  
// This code is contributed by vt_m

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find the sum of
// the series 1+11+111+1111+....
  
// Function for finding summation
function summation($n)
{
    $sum = 0; $j = 1;
    for ($i = 1; $i <= $n; $i++)
    {
        $sum = $sum + $j;
  
        // Appending a 1 at the end
        $j = ($j * 10) + 1;
    }
  
    return $sum;
}
  
// Driver Code
$n = 5;
echo summation($n);
  
// This code is contributed by ajit
?>

chevron_right



Output :

12345

Another method: Let given a series S = 1 + 11 + 111 + 1111 + . . . + upto nth term. Using formula to find sum of series.

  \\ S = 1 + 11 + 111 + 1111 + . . . + upto \ n \ term \\ \\  S = \left ( \frac{1}{9} \right )*\left ( 9 + 99 + 999 + 9999 + . . . + upto \ n \ term \right ) \\ \\ S = \left ( \frac{1}{9} \right ) * \left ( \left (10 ^{1} - 1\right ) + \left (10 ^{2} -1 \right ) +\left (10 ^{3} -1 \right ) + \left (10 ^{4} -1 \right ) + . . . + \left (10 ^{n} -1 \right ) \right ) \\ \\ S = \left ( \frac{1}{9} \right ) *\left (10 ^{1} + 10 ^{2} + 10 ^{3} + 10 ^{4} + . . . + 10 ^{n} - n\right ) \\ \\ S = \left ( \frac{1}{9} \right ) * \left ( \frac{10 * (10^{n} - 1)}{10 - 1} - n \right ) \\ \\ S = \frac{10^{n+1} - 10 - 9n}{81}

Below is the implementation of above approach.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the sum of
// the series 1+11+111+1111+....
#include <bits/stdc++.h>
  
// Function for finding summation
int summation(int n)
{
    int sum;
  
    sum = (pow(10, n + 1) - 
               10 - (9 * n)) / 81;
  
    return sum;
}
  
// Driver Code
int main()
{
    int n = 5;
    printf("%d", summation(n));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// java program to find the sum of
// the series 1+11+111+1111+....
import java.io.*;
  
class GFG {
  
    // Function for finding summation
    static int summation(int n)
    {
        int sum;
      
        sum = (int)(Math.pow(10, n + 1) - 
                10 - (9 * n)) / 81;
      
        return sum;
    }
      
    // Driver Code
    public static void main (String[] args)
    {
        int n = 5;
        System.out.println(summation(n));
    }
}
  
// This code is contributed by anuj_67.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to 
# find the sum of
# the series 1+11+111+1111+....
import math
  
# Function for 
# finding summation
def summation(n):
    return int((pow(10, n + 1) - 
                    10 - (9 * n)) / 81);
  
# Driver Code
print(summation(5));
  
# This code is contributed
# by mits.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the sum of
// the series 1+11+111+1111+....
using System;
  
class GFG {
  
    // Function for finding summation
    static int summation(int n)
    {
        int sum;
      
        sum = (int)(Math.Pow(10, n + 1) - 
                10 - (9 * n)) / 81;
      
        return sum;
    }
      
    // Driver Code
    public static void Main ()
    {
        int n = 5;
        Console.WriteLine(summation(n));
    }
}
  
// This code is contributed by anuj_67.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
//PHP program to find the sum of
// the series 1+11+111+1111+....
  
// Function for finding summation
function summation($n)
{
    $sum;
  
    $sum = (pow(10, $n + 1) - 
                10 - (9 * $n)) / 81;
  
    return $sum;
}
  
// Driver Code
$n = 5;
echo summation($n);
  
// This code is contributed by aj_36
?>

chevron_right



Output :

12345


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : surya2106, jit_t, vt_m, Mithun Kumar



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.