# Program to get the Sum of series: 1 – x^2/2! + x^4/4! -…. upto nth term

This is a mathematical series program where a user must enter the number of terms up to which the sum of the series is to be found. Following this, we also need the value of x, which forms the base of the series.
Examples:

```
Input : x = 9, n = 10
Output : -5.1463

Input : x = 5, n = 15
Output : 0.2837
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Simple approach :
We use two nested loops to compute factorial and use power function to compute power.

## C

 `// C program to get the sum of the series ` `#include ` `#include ` ` `  `// Function to get the series ` `double` `Series(``double` `x, ``int` `n) ` `{ ` `    ``double` `sum = 1, term = 1, fct, j, y = 2, m; ` ` `  `    ``// Sum of n-1 terms starting from 2nd term ` `    ``int` `i; ` `    ``for` `(i = 1; i < n; i++) { ` `        ``fct = 1; ` `        ``for` `(j = 1; j <= y; j++) { ` `            ``fct = fct * j; ` `        ``} ` `        ``term = term * (-1); ` `        ``m = term * ``pow``(x, y) / fct; ` `        ``sum = sum + m; ` `        ``y += 2; ` `    ``} ` `    ``return` `sum; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``double` `x = 9; ` `    ``int` `n = 10; ` `    ``printf``(``"%.4f"``, Series(x, n)); ` `    ``return` `0; ` `} `

## Java

 `// Java program to get the sum of the series ` `import` `java.io.*; ` ` `  `class` `MathSeries { ` ` `  `    ``// Function to get the series ` `    ``static` `double` `Series(``double` `x, ``int` `n) ` `    ``{ ` `        ``double` `sum = ``1``, term = ``1``, fct, j, y = ``2``, m; ` ` `  `       ``// Sum of n-1 terms starting from 2nd term ` `        ``int` `i; ` `        ``for` `(i = ``1``; i < n; i++) { ` `            ``fct = ``1``; ` `            ``for` `(j = ``1``; j <= y; j++) { ` `                ``fct = fct * j; ` `            ``} ` `            ``term = term * (-``1``); ` `            ``m = Math.pow(x, y) / fct; ` `            ``m = m * term; ` `            ``sum = sum + m; ` `            ``y += ``2``; ` `        ``} ` `        ``return` `sum; ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``double` `x = ``3``; ` `        ``int` `n = ``4``; ` `        ``System.out.println(Math.round(Series(x, n) *  ` `                                ``10000.0``) / ``10000.0``); ` `    ``} ` `} `

## Python3

 `# Python3 code to get the sum of the series ` `import` `math ` ` `  `# Function to get the series ` `def` `Series( x , n ): ` `    ``sum` `=` `1` `    ``term ``=` `1` `    ``y ``=` `2` `     `  `    ``# Sum of n-1 terms starting from 2nd term ` `    ``for` `i ``in` `range``(``1``,n): ` `        ``fct ``=` `1` `        ``for` `j ``in` `range``(``1``,y``+``1``): ` `            ``fct ``=` `fct ``*` `j ` `         `  `        ``term ``=` `term ``*` `(``-``1``) ` `        ``m ``=` `term ``*` `math.``pow``(x, y) ``/` `fct ` `        ``sum` `=` `sum` `+` `m ` `        ``y ``+``=` `2` `     `  `    ``return` `sum` ` `  `# Driver Code ` `x ``=` `9` `n ``=` `10` `print``(``'%.4f'``%` `Series(x, n)) ` ` `  `# This code is contributed by "Sharad_Bhardwaj". `

## C#

 `// C# program to get the sum of the series ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// Function to get the series ` `    ``static` `double` `Series(``double` `x, ``int` `n) ` `    ``{ ` `        ``double` `sum = 1, term = 1, fct, j, y = 2, m; ` ` `  `    ``// Sum of n-1 terms starting from 2nd term ` `        ``int` `i; ` `        ``for` `(i = 1; i < n; i++) { ` `            ``fct = 1; ` `            ``for` `(j = 1; j <= y; j++) { ` `                ``fct = fct * j; ` `            ``} ` `            ``term = term * (-1); ` `            ``m = Math.Pow(x, y) / fct; ` `            ``m = m * term; ` `            ``sum = sum + m; ` `            ``y += 2; ` `        ``} ` `        ``return` `sum; ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``double` `x = 9; ` `        ``int` `n = 10; ` `        ``Console.Write(Series(x, n) *  ` `                            ``10000.0 / 10000.0); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output:

```-5.1463
```

Efficient approach :
We can avoid inner loop and use of power function by using values computed in previous iteration.

## CPP

 `// C++ program to get the sum of the series ` `#include ` `#include ` ` `  `// Function to get the series ` `double` `Series(``double` `x, ``int` `n) ` `{ ` `    ``double` `sum = 1, term = 1, fct = 1, p = 1, multi = 1; ` `     `  `    ``// Computing sum of remaining n-1 terms. ` `    ``for` `(``int` `i = 1; i < n; i++) { ` `        ``fct = fct * multi * (multi+1); ` `        ``p = p*x*x; ` `        ``term = (-1) * term;         ` `        ``multi += 2; ` `        ``sum = sum + (term * p)/fct; ` `    ``} ` `    ``return` `sum; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``double` `x = 9; ` `    ``int` `n = 10; ` `    ``printf``(``"%.4f"``, Series(x, n)); ` `    ``return` `0; ` `} `

## Java

 `// Java program to get ` `// the sum of the series ` `import` `java.io.*; ` ` `  `class` `GFG { ` `     `  `    ``// Function to get  ` `    ``// the series ` `    ``static` `double` `Series(``double` `x, ``int` `n) ` `    ``{ ` `        ``double` `sum = ``1``, term = ``1``, fct = ``1``; ` `        ``double` `p = ``1``, multi = ``1``; ` `         `  `        ``// Computing sum of remaining  ` `        ``// n-1 terms. ` `        ``for` `(``int` `i = ``1``; i < n; i++) ` `        ``{ ` `            ``fct = fct * multi * (multi + ``1``); ` `            ``p = p * x * x; ` `            ``term = (-``1``) * term;      ` `            ``multi += ``2``; ` `            ``sum = sum + (term * p) / fct; ` `        ``} ` `        ``return` `sum; ` `    ``} ` `     `  `    ``// Driver Code ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` `        ``double` `x = ``9``; ` `        ``int` `n = ``10``; ` `        ``System.out.printf(``"%.4f"``, Series(x, n)); ` `    ``} ` `} ` ` `  `// This code is contributed by Nikita Tiwari. `

## Python3

 `# Python3 code to get the sum of the series ` ` `  `# Function to get the series ` `def` `Series(x, n): ` `    ``sum` `=` `1` `    ``term ``=` `1` `    ``fct ``=` `1` `    ``p ``=` `1` `    ``multi ``=` `1` `     `  `    ``# Computing sum of remaining n-1 terms. ` `    ``for` `i ``in` `range``(``1``, n): ` `        ``fct ``=` `fct ``*` `multi ``*` `(multi``+``1``) ` `        ``p ``=` `p``*``x``*``x ` `        ``term ``=` `(``-``1``) ``*` `term ` `        ``multi ``+``=` `2` `        ``sum` `=` `sum` `+` `(term ``*` `p)``/``fct ` `     `  `    ``return` `sum` ` `  `# Driver Code ` `x ``=` `9` `n ``=` `10` `print``(``'%.4f'``%` `Series(x, n)) ` ` `  `# This code is contributed by "Sharad_Bhardwaj". `

## C#

 `// C# program to get ` `// the sum of the series ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``// Function to get  ` `    ``// the series ` `    ``static` `float` `Series(``double` `x, ``int` `n) ` `    ``{ ` `        ``double` `sum = 1, term = 1, fct = 1; ` `        ``double` `p = 1, multi = 1; ` `         `  `        ``// Computing sum of remaining  ` `        ``// n-1 terms. ` `        ``for` `(``int` `i = 1; i < n; i++) ` `        ``{ ` `            ``fct = fct * multi * (multi + 1); ` `            ``p = p * x * x; ` `            ``term = (-1) * term;  ` `            ``multi += 2; ` `            ``sum = sum + (term * p) / fct; ` `        ``} ` `        ``return` `(``float``)sum; ` `    ``} ` `     `  `    ``// Driver Code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``double` `x = 9; ` `        ``int` `n = 10; ` `        ``Console.Write(Series(x, n)); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output:

```-5.1463
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : jit_t

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.